GeV neutrino mass models: Experimental reach vs. theoretical predictions

RWR, Walter Winter – Arxiv 1607.07880 – PRD 94, 073004 (2016)

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

Rasmus W. Rasmussen Matter and the Universe 12-12-16

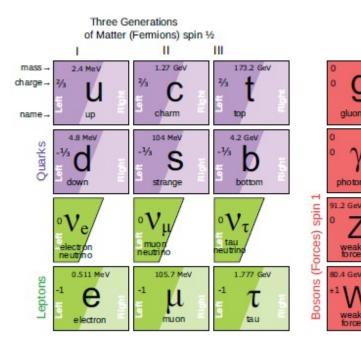
Theory of elementary particle physics

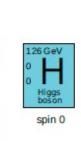
> The Standard Model (SM)

Successful at describing all observed particle interactions at the LHC and preceding colliders

Shortcomings: Neutrino masses, dark matter, baryon asymmetry and etc.

Introducing sterile neutrinos





Beyond the SM

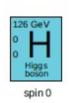
Possible extension: The Neutrino Minimal Standard Model (nuMSM)

[Asaka, Shaposhnikov (2005); Canetti, Drewes, Frossard, Shaposhnikov (2012); Drewes, Garbrecht (2015); Hernandez, Kekic, Lopez-Pavon, Racker, Salvado (2016)..]

> $N_{_1}$ is dark matter candidate with keV mass and total mixing $\left|U_{_I}\right|^2 < 10^{-8}$

> N_2 and N_3 with 100 MeV-100 GeV mass: Origin of neutrino masses and baryon asymmetry





nuMSM requirements and beyond

> nuMSM: Mass degeneracy $\Delta M/M \le 10^{-3}$ for successful baryon asymmetry [Canetti, Drewes, Frossard, Shaposhnikov (2012)]

We will consider 3 sterile neutrinos at the GeV scale: No mass degeneracy needed.
[Drewes, Garbrecht (2012)]

> Essentially, we only need three Yukawa/mass matrices

$$M_l = vY_l$$
, $(M_D)_{\alpha I} = vY_{\alpha I}$ and M_R

which appear in the seesaw Lagrangian

$$L_{\text{Seesaw}} = L_{\text{SM}} + \overline{N}_I i \partial_{\mu} \gamma^{\mu} N_I - Y_{\alpha I} \overline{L}_{\alpha} N_I \Phi - \frac{1}{2} M_R \overline{N}_I^C N_I + h.c.$$

to calculate the observables

Neutrino masses and mixing

- > Seesaw mechanism $m_{_V}\!=\!-M_{_D}M_{_R}^{-1}\,M_{_D}^T$ and $M_{_N}\!=\!M_{_R}$ with assumption $M_{_D}M_{_R}^{-1}\!\ll\!1$
- [Minkowski (1977); Gell-Mann, Ramond, Slansky (1979); Yanagida (1980); Mohapatra (1980); Schechter, Valle (1980)]
- > The PMNS mixing matrix $U_{PMNS} = U_l^H U_v$ where $U_l^H := (U_l^*)^T$
- > The active-sterile mixing matrix $U_{\alpha I} = (U_l^H M_D M_R^{-1} U_N)_{\alpha I}$
- > Decay rates depend on $\Gamma(N_I \to l_\alpha X) \propto \left| U_{\alpha I} \right|^2$ X = hadron [Gorbunov, Shaposhnikov (2007)]
- > We will focus on the individual mixing element $|U_{\alpha I}|^2$ and total mixing $|U_I|^2 = \sum_{\alpha} |U_{\alpha I}|^2$ for sterile neutrino

Generic assumptions

- > We used the Casas-Ibarra parameterization $M_D = U_{PMNS} \sqrt{m_v} R \sqrt{M_R}$ [Casas, Ibarra (2001)]
- > Here $m_v = \text{diag}(m_1, m_2, m_3)$ and $M_R = \text{diag}(M_1, M_2, M_3)$ with $m_1 \in [0,0.23] \, \text{eV}$ and $M_i \in [0.1, 80] \, \text{GeV}$ with $M_1 < M_2 < M_3$

> The complex matrix R have to satisfy $R^T R = 1$. This means it can be parameterized by rotation matrices with a complex angle

$$R = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13} & -c_{12}s_{23} - s_{12}c_{23}s_{13} & c_{23}c_{13} \end{bmatrix}$$

where $c_{ij} = \cos(\omega_{ij})$ and $s_{ij} = \sin(\omega_{ij})$ with $\text{Re}(\omega_{ij}) \in [0, 2\pi]$ and $\text{Im}(\omega_{ii}) \in [-8,8]$

Generic assumptions continued

> Beside Casas-Ibarra parameterization, we investigated random matrices

$$Y_{l} = \begin{pmatrix} y_{e} & 0 & 0 \\ 0 & y_{\mu} & 0 \\ 0 & 0 & y_{\tau} \end{pmatrix} \quad M_{D} = m_{D} \begin{pmatrix} c_{1} & c_{2} & c_{3} \\ c_{4} & c_{5} & c_{6} \\ c_{7} & c_{8} & c_{9} \end{pmatrix} \quad M_{R} = \begin{pmatrix} M_{1} & 0 & 0 \\ 0 & M_{2} & 0 \\ 0 & 0 & M_{3} \end{pmatrix}$$

- > Again, M_i ∈[0.1,80]GeV with M_1 < M_2 < M_3
- > O(1) comeplex numbers: $|c_i| = k_i \in [0.2,5]$ and $\arg(c_i) = \phi_i \in [0,2\pi]$
- > Rescale m_D so $\sum m_v < 0.72 \,\mathrm{eV}$ and obey mass square differences

Flavor models

> Flavor symmetric mass models in the Froggatt-Nielsen (FN) framework [Froggatt, Nielsen (1979)]

#	$M_{\ell}/\langle H angle$	$M_D/\langle H \rangle$	M_R/M_{B-L}	$ \begin{vmatrix} p^1, p^2, p^3 \\ q^1, q^2, q^3 \\ r^1, r^2, r^3 \end{vmatrix} $	G_F
1	$ \begin{pmatrix} \epsilon^4 & \epsilon^5 & \epsilon^2 \\ \epsilon^2 & \epsilon^2 & \epsilon^2 \\ \epsilon^2 & \epsilon^4 & 1 \end{pmatrix} $	$\epsilon \begin{pmatrix} \epsilon & \epsilon^2 & \epsilon^2 \\ \epsilon & 1 & \epsilon \\ \epsilon & 1 & \epsilon \end{pmatrix}$	$ \epsilon^{3} \begin{pmatrix} 1 & \epsilon^{2} & 1 \\ \epsilon^{2} & 1 & \epsilon^{2} \\ 1 & \epsilon^{2} & 1 \end{pmatrix} $	(2,0), (0,0), (2,5) (2,3), (4,1), (3,2) (1,4), (2,6), (0,5)	$Z_5 imes Z_7$
2	$\epsilon \begin{pmatrix} \epsilon^4 & \epsilon^4 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & 1 \\ \epsilon^3 & \epsilon^4 & 1 \end{pmatrix}$	$ \epsilon \begin{pmatrix} \epsilon & \epsilon^3 & \epsilon \\ \epsilon & 1 & \epsilon^3 \\ \epsilon & \epsilon^2 & \epsilon \end{pmatrix} $	$\epsilon^2 \begin{pmatrix} \epsilon & \epsilon & \epsilon \\ \epsilon & 1 & \epsilon^2 \\ \epsilon & \epsilon^2 & 1 \end{pmatrix}$	(2,2), (3,2), (2,5) (0,1), (2,2), (4,2) (2,6), (3,4), (1,0)	$Z_5 imes Z_7$
3	$ \epsilon \begin{pmatrix} \epsilon^4 & \epsilon^3 & \epsilon^5 \\ \epsilon^3 & \epsilon^2 & \epsilon^2 \\ \epsilon & \epsilon^2 & 1 \end{pmatrix} $	$\epsilon^2 \begin{pmatrix} \epsilon & \epsilon & \epsilon^3 \\ \epsilon & 1 & 1 \\ \epsilon & 1 & 1 \end{pmatrix}$	$ \epsilon \begin{pmatrix} \epsilon & \epsilon & \epsilon^5 \\ \epsilon & 1 & \epsilon^4 \\ \epsilon^5 & \epsilon^4 & 1 \end{pmatrix} $	(3,7), (3,0), (2,7) (1,5), (3,6), (3,2) (1,4), (2,4), (2,0)	$Z_5 imes Z_8$
			, , ,		

[Plentinger, Seidl, Winter (2007)]

Flavor models continued

> We assume $\varepsilon \approx 0.2$ since

$$m_u: m_c: m_t \approx \varepsilon^8: \varepsilon^4: 1$$
, $m_d: m_s: m_b \approx \varepsilon^5: \varepsilon^2: 1$ and $m_e: m_\mu: m_\tau \approx \varepsilon^4: \varepsilon^2: 1$.

> Additionally, this value also appears in the CKM mixing matrix and it can possibly explain the neutrino mass ratio due to $\Delta m_{21}^2/|\Delta m_{32}|^2 = \varepsilon^2$

$$m_1: m_2: m_3 \approx \varepsilon^2: \varepsilon: 1$$
, $m_1: m_2: m_3 \approx 1: 1: \varepsilon$ and $m_1: m_2: m_3 \approx 1: 1: 1$. (Normal hierarchy) (Inverted hierarchy) (Quasi-degenerate)

> Again, $M_i \in [0.1, 80] \, \text{GeV}$ with $M_1 < M_2 < M_3$, $\sum_i m_i < 0.72 \, \text{eV}$ and O(1) complex numbers $|c_i| = k_i \in [0.2, 5]$ and $\arg(c_i) = \phi_i \in [0, 2\pi]$

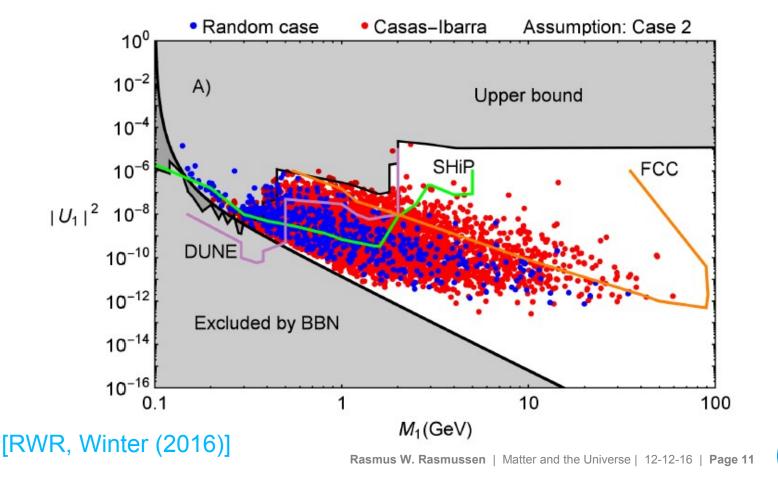
Experimental constraints & future experiments

All realizations have to obey experimental constraints: Neutrino oscillation data, LFV, neutrinoless double beta decay, direct searches, loop corrections and Big Bang nucleosynthesis

- > Future experiments: DUNE, SHiP and FCC [Adams et. al. (2013), Blondel, Graverini, Serra, Shaposhnikov (2014), Alekhin et. al. (2015); Anelli et al. (2015)]
- > Sensitivity calculated under the assumption $|U_{el}|^2$: $|U_{\mu I}|^2$: $|U_{\tau I}|^2$ = 1:16:3.8
- > Focus on total mixing $|U_I|^2$ and individual mixing elements $|U_{\it eI}|^2$ and $|U_{\it \mu I}|^2$

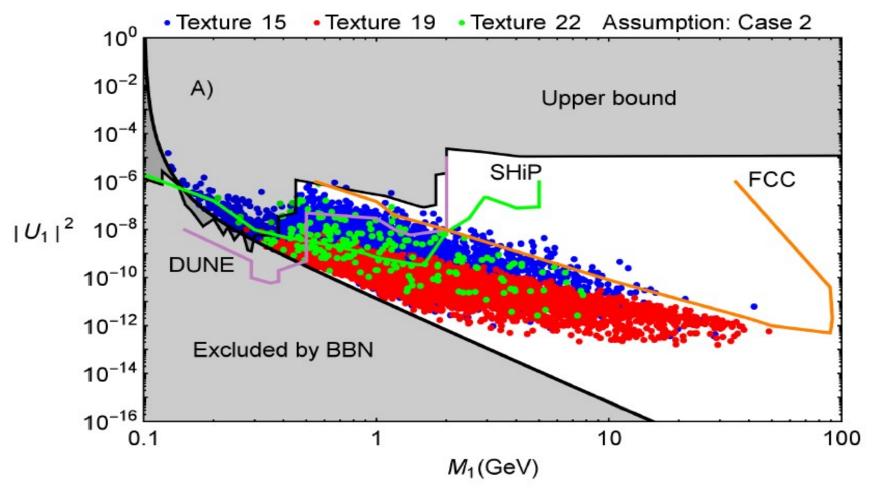
Generic assumption – Total active-sterile mixing for N1

- Casas-Ibarra parameterization can generate the whole parameter space [Drewes, Garbrecht (2015)]
- > But still interesting to investigate the scatter plot of the mixing elements



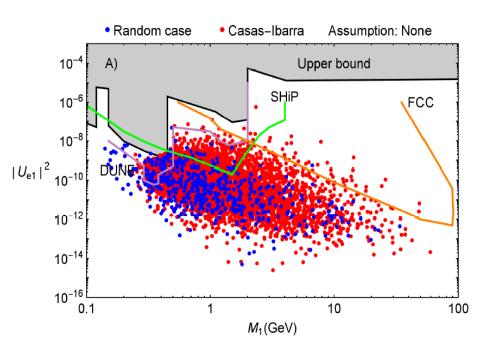
Flavor models – Total active-sterile mixing for N1

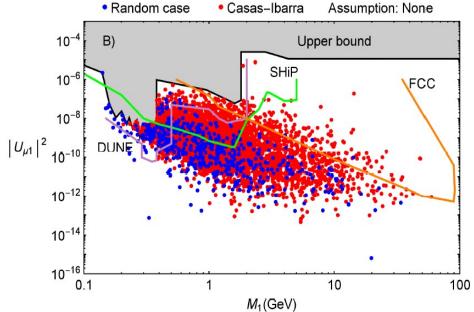
Total mixing is partially within reach [RWR, Winter (2016)]



Generic assumptions - Individual mixing elements for N1

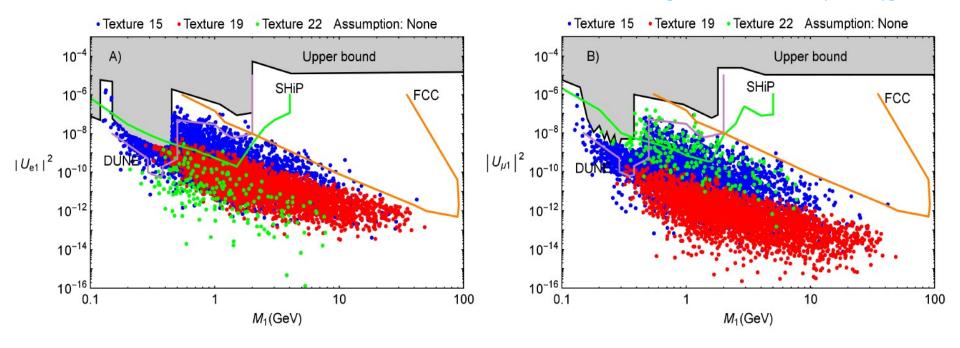
> No preference for particular mixing [RWR, Winter (2016)]





Flavor models - Individual mixing elements for N1

> Structure in mass matrices leads to refined mixing [RWR, Winter (2016)]



> Therefore, channels such as $N \to e\pi/eK$ and $N \to \mu\pi/\mu K$ can resolve this mixing pattern

Summary

- Sterile neutrinos are theoretically motivated and can solve many of the problems in the SM
- Generic assumptions generates the whole parameter space
- Predictions from flavor models are more refined in comparison to generic assumptions
- Potential to exclude parameter space of models by measuring the total mixing
- > Important to measure the individual mixing elements

Back-up

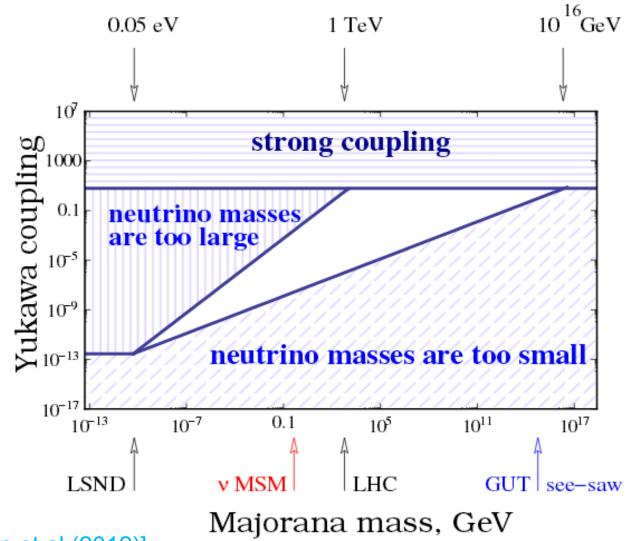
Number of sterile neutrinos and consequences

> The Lagrangian becomes

$$L_{\text{Seesaw}} = L_{\text{SM}} + \overline{N}_I i \, \partial_\mu \gamma^\mu N_I - Y_{\alpha I} \overline{L}_\alpha N_I \Phi - \frac{1}{2} M_R \overline{N}_I^C N_I + h.c.$$
 for Majorana neutrinos (Dirac vs Majorana particles)

- > Number of sterile neutrinos ${\cal I}$ and mass scale ${\cal M}_{\it R}$ cannot be fixed by symmetries
- > I = 1: Only one of the active neutrinos gets a mass
- > *I* = 2: Minimal requirement to explain neutrino masses and baryon asymmetry
- > I = 3: All active neutrinos get masses and all oscillation experiments (including LSND) can be explained together with the baryon asymmetry. If LSND is dropped, dark matter can also be explained
- > I > 3: Different combinations of the above together with extra relativistic degrees of freedom in cosmology, neutrino anomalies etc.

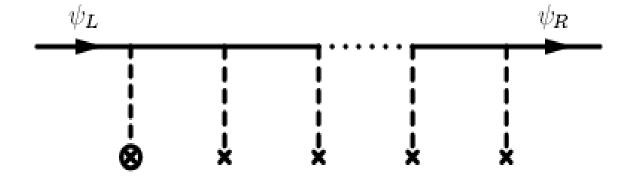
New mass scale and Yukawas



[Abazajian et al (2012)]

Froggatt-Nielsen mechanism

> Pictorial diagram of generating fermion mass terms with flavons acquiring universal VEVs \boldsymbol{v}_f and heavy fermions with universal mass \boldsymbol{M}_F



Experimental constraints

Neutrino oscillations

$$31.29^{\circ} < \theta_{12} < 35.91^{\circ}$$
 $7.85^{\circ} < \theta_{13} < 9.10^{\circ}$ $38.20^{\circ} < \theta_{23} < 53.30^{\circ}$
 $7.02*10^{-5} < \Delta m_{21}^{2} [\text{eV}^{2}] < 8.09*10^{-5}$ $2.32*10^{-3} < \Delta m_{32}^{2} [\text{eV}^{2}] < 2.62*10^{-3}$

[Gonzalez-Garcia, Maltoni, Schwetz (2016)]

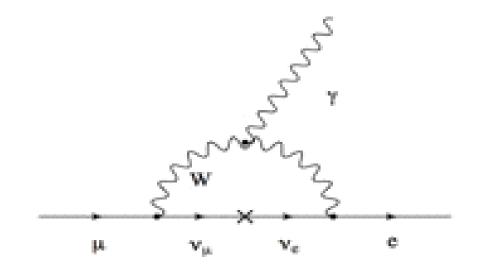
Lepton flavor violation

$$Br(\mu \to \gamma e) < 5.7 * 10^{-13}$$

$$Br(\tau \to \gamma \mu) < 1.5 * 10^{-8}$$

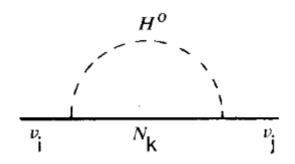
$$Br(\tau \to \gamma e) < 1.8 * 10^{-8}$$

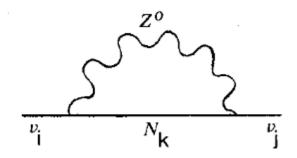
[MEG Collaboration (2013)]



Experimental constraints

> Loop corrections due to virtual heavy neutrinos [Pilaftsis (1992)]





> Neutrinoless double beta decay $m_{\beta\beta} < 0.2 \,\mathrm{eV}$

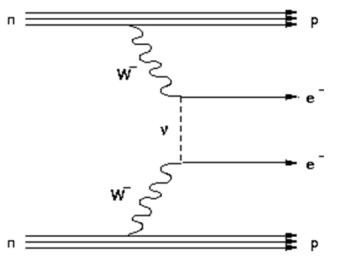
[GERDA Collaboration (2013)]

> Direct searches

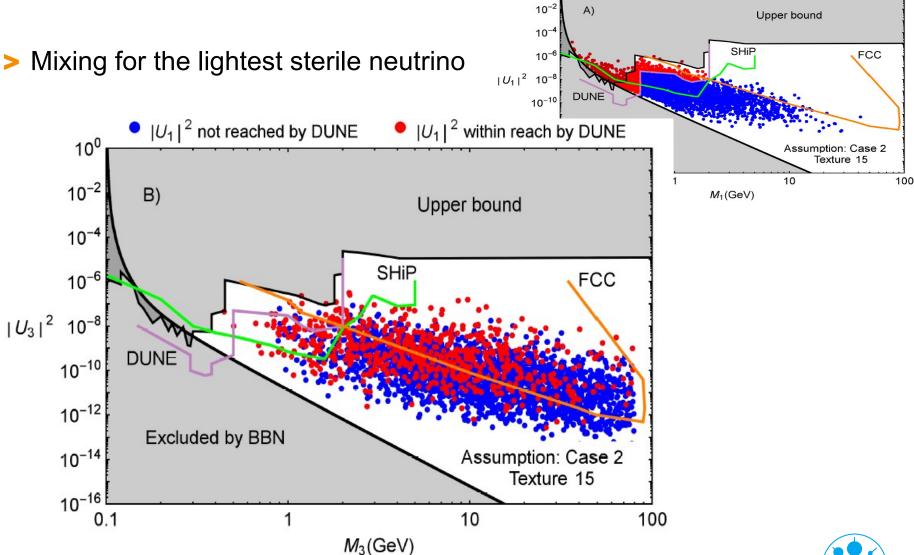
[CHARM (1995), DELPHI (1997), NuTeV (1999), NOMAD (2001), PS191 (2012) etc..]

> Big Bang nucleosynthesis $\tau_N < 0.1 \,\mathrm{s}$

[Dolgov, Hansen, Raffelt, Semikoz (2000), Ruchayskiy, Ivashko (2012)]



Complementary among experiments



Not reached by DUNE

10⁰

Within reach by DUNE

Total mixing for N3

> FCC constrains the parameter space for heavier sterile neutrinos

