Neutrinos in core-collapse supernova nucleosynthesis Neutrino-driven winds and the ν process

A. Sieverding¹, M.-R. Wu², G. Martínez-Pinedo^{1,3}, K. Langanke^{1,3},A. Heger⁴

¹Technische Universität Darmstadt ²University of Copenhagend, Nils Bohr institute ³GSI Helmholtzzentrum, Darmstadt ⁴Monash Centre for Astrophysics, Melbourne

Matter and Universe 2016 Helmholtz institute Mainz 12 Dec. 2016

1 Introduction

Results

- Neutrino driven winds
- The ν process in explosive nucleosynthesis
- Radioactive nuclei in the ν process

3 Conclusions and Outlook

Neutrinos and nucleosynthesis in supernovae

[Modified from Janka+, PTEP 01A309, 2012]

shockwave (revived mainly by ν -heating)

 $\sim 10^{58}$ neutrinos of different flavors in ~ 10 seconds $\langle E_{\nu} \rangle \sim 7 - 20 \text{ MeV}$ $\langle E_{\nu_e} \rangle \lesssim \langle E_{\overline{\nu}_e} \rangle < \langle E_{\nu_{\mu,\tau}} \rangle$

Neutrinos and nucleosynthesis in supernovae

shockwave (revived mainly by ν -heating)

 $\sim 10^{58}$ neutrinos of different flavors in ~ 10 seconds $\langle E_{\nu} \rangle \sim 7 - 20 \text{ MeV}$ $\langle E_{\nu_e} \rangle \lesssim \langle E_{\overline{\nu}_e} \rangle < \langle E_{\nu_{\mu,\tau}} \rangle$ - neutrino (induced) nucleosynthesis

→ light elements : Li, Be, B, F → radioactive nuclei : 22 Na, 26 AI rare isotopes : 138 La, 180 Ta

- neutrino-driven wind

 $\begin{array}{l} \nu_e + n \rightarrow p + e^- \\ \bar{\nu}_e + p \rightarrow n + e^+ \end{array}$

 \rightarrow determine the neutron-to-proton ratio (or equivalently, the electron number fraction per baryon, $Y_e)$ of the ejecta

Neutrinos and nucleosynthesis in supernovae

shockwave (revived mainly by ν -heating)

 $\sim 10^{58}$ neutrinos of different flavors in ~ 10 seconds $\langle E_{\nu} \rangle \sim 7 - 20 \text{ MeV}$ $\langle E_{\nu_e} \rangle \lesssim \langle E_{\overline{\nu}_e} \rangle < \langle E_{\nu_{\mu,\tau}} \rangle$ - neutrino (induced) nucleosynthesis

→ light elements : Li, Be, B, F → radioactive nuclei : 22 Na, 26 AI rare isotopes : 138 La, 180 Ta

- neutrino-driven wind

 $\begin{array}{l} \nu_e + n \rightarrow p + e^- \\ \bar{\nu}_e + p \rightarrow n + e^+ \end{array}$

 \rightarrow determine the neutron-to-proton ratio (or equivalently, the electron number fraction per baryon, Y_e) of the ejecta

neutrino flavor oscillations $\nu_e \leftrightarrow \nu_{\mu,\tau} \& \bar{\nu}_e \leftrightarrow \bar{\nu}_{\mu,\tau}$ $\nu_e \leftrightarrow \nu_s \& \bar{\nu}_e \leftrightarrow \bar{\nu}_s$ when? where? how (much)?

Supernova neutrino signals

- confirms the basic picture of the core-collapse SN model
- constraints on neutrino emission timescale and relevant energies

• Thousands of events expected in multi-kiloton detectors for the next galactic supernova

Secondary evidence from nucleosynthesis

- Enrichment of metal-poor stars
- production of rare elements (Li,Be,B,La,Ta)
- short-lived radioisotopes in pre-solar grains (Banerjee et al. 2016)
- long-lived radioactive isotopes with observed γ -ray lines (²⁶Al,⁶⁰Fe)

Neutrino flavor oscillations

- Collective oscillations close to the PNS surface can affect the u driven wind
- MSW flavor transformations can affect the ν process in the outer regions

1 Introduction

Results

Neutrino driven winds

- The ν process in explosive nucleosynthesis
- Radioactive nuclei in the ν process

3 Conclusions and Outlook

Nucleosynthesis in neutrino driven winds

Nucleosynthesis in neutrino driven winds

Neutron-deficient isotopes of elements between ${\rm Zn}$ and ${\rm Mo}$

Uncertainties:

- Neutrino-matter interactions
- Flavor oscillations:
 - Collective oscillations shown to have only minor impact (Wu et al 2015)
 - ► Active-sterile (~ eV) transformations (Wu et al 2013).
- Multi-D effects (Wanajo et al. 2011)

1 Introduction

Results

• Neutrino driven winds

• The ν process in explosive nucleosynthesis

• Radioactive nuclei in the ν process

3 Conclusions and Outlook

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu} \rangle \approx 8 20 \text{ MeV}$
- $\langle E_{\nu_e} \rangle \lesssim \langle E_{\bar{\nu}_e} \rangle \leq \langle E_{\nu_{\mu,\tau}} \rangle$

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu} \rangle \approx 8 20 \text{ MeV}$
- $\langle E_{\nu_e} \rangle \lesssim \langle E_{\bar{\nu}_e} \rangle \leq \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β -decay

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu} \rangle \approx 8 20 \text{ MeV}$
- $\langle E_{\nu_e} \rangle \lesssim \langle E_{\bar{\nu}_e} \rangle \leq \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β -decay
- Particle evaporation

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu}
 angle pprox 8 20 \; {
 m MeV}$
- $\langle E_{\nu_e} \rangle \lesssim \langle E_{\bar{\nu}_e} \rangle \leq \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β -decay
- Particle evaporation
- Capture of spallation products

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu} \rangle \approx 8 20 \text{ MeV}$
- $\langle E_{\nu_e} \rangle \lesssim \langle E_{\bar{\nu}_e} \rangle \leq \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β-decay
- Particle evaporation
- Capture of spallation products
- Sensitive to all neutrino flavors (also those without direct detection)

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures → Ne,C,He shells
- In this regions neutrinos can have been affected by MSW flavor transformations

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures → Ne,C,He shells
- In this regions neutrinos can have been affected by MSW flavor transformations
- Main candidates for neutrino nucleosynthesis: ⁷Li and ¹¹B via ⁴He(ν_x, ν'_x p/n) and ¹²C(ν_x, ν'_x p) ...

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures → Ne,C,He shells
- In this regions neutrinos can have been affected by MSW flavor transformations
- Main candidates for neutrino nucleosynthesis: ⁷Li and ¹¹B via ⁴He(ν_x, ν'_x p/n) and ¹²C(ν_x, ν'_x p) ...

¹⁹**F** via ²⁰Ne(ν_x, ν'_x p/n)

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures → Ne,C,He shells
- In this regions neutrinos can have been affected by MSW flavor transformations
- Main candidates for neutrino nucleosynthesis: ⁷Li and ¹¹B via ⁴He(ν_x, ν'_x p/n) and ¹²C(ν_x, ν'_x p) ...

¹⁹**F** via ²⁰Ne(ν_x, ν'_x p/n)

¹³⁸La and ¹⁸⁰Ta via ¹³⁸Ba(ν_e, e^-) and ¹⁸⁰Hf(ν_e, e^-)

Supernova model

- 1D parametrized explosions (KEPLER code, e.g. Heger et al. 2007)
- kinetic explosion energy $E_{\rm expl} = 1.2 imes 10^{51} {
 m erg}$

Neutrino flux

- Large nuclear network
- Exponentially decreasing neutrino luminosity
- Two sets of neutrino energies

- Thermal Fermi-Dirac spectrum, time independent
- Extended set of *v*-nucleus cross-sections

High energies

• $\langle E_{\nu_e} \rangle = 12 \text{ MeV}$

•
$$\langle E_{ar{
u}_e}
angle = 15$$
 MeV

•
$$\langle E_{
u, ar{
u}_{\mu, au}}
angle = 19$$
MeV

Low energies

•
$$\langle E_{
u_e}
angle = 9 \; {
m MeV}$$

•
$$\langle E_{ar{
u}_e}
angle = 13$$
 MeV

•
$$\langle E_{
u_{\mu, au}}
angle = 13$$
 MeV

Evaluation of CCSNe nucleosynthesis calculations

• The solar abundances provide observational information for nucleosynthesis results to compare with

Production factor

•
$$P_{A,\text{normalized}} = \left(\frac{X_A}{X_A^{\odot}}\right) / \left(\frac{X_{16_O}}{X_{16_O}^{\odot}}\right)$$

Assuming that CCSNe are the main source of solar ¹⁶O

• $P_{A, {
m normalized}} \sim 1$ indicates CCSNe as possible production site

• $P_{A,\text{normalized}} \ll 1$ hints another production site or mechanism

•	Averaged	production	factor fo	r 13-30 M	$_{\odot}$ stars	(solar metallicity))
---	----------	------------	-----------	-----------	------------------	---------------------	---

Nucleus	no $ u$	Low energies ¹	High energies ²	
⁷ Li	0.001	0.07	0.91	4 He($ u$, $ u$ ' p/n)
¹¹ B	0.005	0.45	1.81	¹² C(ν,ν' p/n)
¹⁵ N	0.06	0.09	0.15	¹⁶ Ο(ν,ν' p/n)
¹⁹ F	0.12	0.25	0.40	20 Ne($ u$, $ u$ ' p/n)
¹³⁸ La	0.12	0.86	1.70	$^{138}Ba(u_e,e^-)$
¹⁸⁰ Ta*	0.6	1.49	2.67	180 Hf($ u_e$,e $^-$)

• 1)
$$\langle E_{\nu_e} \rangle = 9$$
 MeV, $\langle E_{\bar{\nu}_e, \nu_X} \rangle = 13$ MeV

- 2) $\langle E_{
 u_e} = 13$ MeV , $\langle E_{ar
 u_e}
 angle = 16$ MeV, $\langle E_{
 u_{\chi}}
 angle = 19$ MeV
- *) Only about 40% of ¹⁸⁰Ta survive in the long-lived isomeric state

Effect of MSW flavor transformations

MSW flavor transformations can lead to an almost complete conversion of $\nu_e \leftrightarrow \nu_{\mu,\tau}$ (Normal mass hierarchy)

• $ho_{
m res}Y_e\propto\Delta m_{13}^2\cos2 heta_{13}~E_
u^{-1}pprox$ 630 g cm 3 for $E_
u=$ 50MeV

Introduction

Results

- Neutrino driven winds
- The ν process in explosive nucleosynthesis
- Radioactive nuclei in the ν process

3 Conclusions and Outlook

Production channels for ²⁶ Al in the ν process

Galactic $^{26}\mathrm{Al}$ emission with INTEGRAL SPI

- Different mechanisms:
 - enhancement of
 - p-captures
 - charged-current channel
 - neutral-current channels

Contribution to the production of radioactive nuclei

• $^{60}\text{Fe}/^{26}\text{Al}\approx 1.25$ (Observations give ≈ 0.35)

• Further contributions from less massive stars, Wolf-Rayet stars, rotating stars

lsotope	without $ u$	low energy $ u$	high energy $ u$
²⁶ AI	5.19	5.64	6.56
²² Na	0.20	0.27	0.39

²²Na with a half life of 2.6 yr is affected similarly
 Neutrino Nucleosynthesis
 A. Sieverding, M.-R. Wu

A. Sieverding, M.-R. Wu, G. Martínez-Pinedo, A. Heger

- Core-Collapse supernovae are an ideal laboratory to study neutrino properties
- Impact on nucleosynthesis in the neutrino driven wind and the ν process
 - Production of nuclei between Zn and Mo in NDW
 - Light elements in the ν process
 - Increased production of radioactive nuclei (e.g. ²⁶Al)
- Neutrino Oscillations seem to have a minor impact on nucleosynthesis results, but the impact of newly discovered instabilities need to be explored

Neutrino properties are important to understand astrophysical phenomena