Measurement of quarkonium production at the LHC: from pp to Pb–Pb collisions with insight into the Quark-Gluon Plasma

A. Andronic – GSI Darmstadt

- Quarkonium production in pp and p-Pb collisions
- Quarkonium production in Pb–Pb collisions
- Summary and outlook

Charmonium production in pp collisions

ALICE, PLB 704 (2011) 442

Observable to test models (non-perturbative QCD)

Reference for measurements in p–Pb, Pb–Pb collisions

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}{N_{coll}^{AA}\cdot\mathrm{d}N_{pp}/\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$$

pp collisions

3

pp collisions

4

J/ψ production vs. multiplicity

ALICE, PLB 712 (2012) 165

5

J/ψ production vs. multiplicity

6

J/ψ production in p–Pb collisions

7

A.Andronic

ALICE, JHEP 02 (2014) 073, 06 (2015) 55

Shadowing describes data, not that well though ...more sophistications needed? Precision to improve significantly with data just acquired (Nov.-Dec. 2016)

$\psi(2S)$ production in p–Pb collisions

8

A.Andronic

(at least in first order) models give same result for $\psi(2S)$ as for J/ψ difference predominant at low p_T

A.Andronic

LHCb, arXiv:1601.07878

9

Lattice QCD predicts a phase transition (at $\mu_B=0$)

...of crossover type, Y. Aoki et al., Nature 443 (2006) 675 $T_c \simeq 145-164 \text{ MeV}, \ \varepsilon_c \simeq (0.18 - 0.5) \text{ GeV/fm}^3$, or $(1.2-3.1)\varepsilon_{nuclear}$

A.Andronic

 $q - \bar{q}$ pairs produced early in pQCD processes

- Open heavy-flavor hadrons are at high energies abundant probes of high density stages (thermalization and energy loss)
- Quarkonium formation is hindered with a screened potential Matsui & Satz, Phys. Lett. B 178 (1986) 178

"If high energy heavy-ion collisions lead to the formation of a hot quark-gluon-plasma, then color screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region."

no $q\bar{q}$ state if $r_{q\bar{q}}(T) > \lambda_D \simeq 1/(g(T)T)$ (Debye length in QGP) via binding E of different states, quarkonia constitute a "thermometer" of deconfined medium

Main observable (vs. N_{part} and p_T):

11

The nuclear modification factor, R_{AA} = "hot QCD" / "binary-scaled pp"

Nucleus-nucleus collisions at the LHC

12

a picture (with 500 mil. pixels) of a central collision (about 3000 primary tracks)

D-meson production

13

A.Andronic

ALICE, JHEP 03 (2016) 081

CMS, CMS-PAS-HIN-16-001

Large suppression of charmed mesons, due to quark energy loss in QGP Heavy quarks also experience collective flow (similar magnitude as lighter siblings)

Charmonium data at RHIC and the LHC

14

A.Andronic

 ${
m d}N_{ch}/{
m d}\eta\simarepsilon$ (>16 GeV/fm³, for ${
m d}N_{ch}/{
m d}\eta\simeq$ 1500)

- "suppression" at RHIC
- dramatically different at the LHC

Charmonium data at RHIC and the LHC

15

A.Andronic

- "suppression" at RHIC
- dramatically different at the LHC

Statistical Hadronization Model $N_{J/\psi} \sim (N_{c\bar{c}}^{dir})^2$

Predictions: AA et al., PLB 652 (2007) 259

What is so different at the LHC? (compared to RHIC) $\sigma_{c\bar{c}}$: ~10x, Volume: ~2.2x

 J/ψ is another observable (charm) for the phase boundary calculations are for T=156 MeV

Charmonium production at the LHC

16

A.Andronic

the generic prediction by the model is confirmed by data arXiv:1606.08197 establishes charmonium as a powerful new observable of the phase boundary

 J/ψ production at 5 TeV

17

ALICE, arXiv:1606.08197

\mathbf{J}/ψ production vs. p_T

18

A.Andronic

JHEP 06 (2015) 055

ALICE,

distinct differences between Pb–Pb and p–Pb, further support that low- $p_T J/\psi$ are from (re)generation (while at high- p_T outcome of charm energy loss)

Connection to the phase diagram of QCD

20

A.Andronic

...an important connection, but not decisive (yet)

(recall that only $\sigma_{c\bar{c}}$ is a new parameter in the statistical model, besides T, V)

...as transport models describe data equally well (and predict $R_{AA}(p_T)$ and v_2) assuming continuous dissociation and formation during the whole lifetime of QGP

is there a way to make the distinction?

$\psi(2S)$ production at the LHC

21

A.Andronic

CMS, arXiv:1611.01438

ALICE, JHEP 05 (2016) 179

at the SPS, the thermal value (SHM) was reached for central Pb–Pb ($p_T > 0$)

LHC: uncertainties large, no conclusion yet ... Run 2 and Run 3 data crucial

The weight of the $\psi(2S)$ measurement

22

A.Andronic

Central Barrel: measurement possible only with upgrade (10 nb^{-1}) Muon Spectrometer: a first glimpse with baseline data (1 nb^{-1}) , a real measurement only with upgraded ALICE ALICE, JPG 41 (2014) 087001

Υ production

 $\Upsilon(1S)$ supression interpreted as effect of feed-down from $\Upsilon(2S,3S),$ which were fully dissociated ("sequential suppression")

Υ production

24

Transport model predicts a small fraction of regenerated Υ (more at y = 0) "Primordial": assumes that 60% of $\Upsilon(1S)$ originates from feed-down

Υ production

A.Andronic

an intriguing result ...even if, considering uncertainties, not a large effect expectation from the sequential "melting" (Debye screening): $R_{AA}^{5.02} \leq R_{AA}^{2.76}$ do we see *substantial* (re)generation? (in QGP/at phase boundary?)

Υ production (relative)

26

27

- A.Andronic
- A wealth of data on quarkonium production in pp and p–Pb collisions interesting observations on multiplicity dependence
- Everybody agrees that we see (re)combination of charm quarks at the LHC ...a new observable for the QCD phase boundary
- Interesting (sequential?) "disappearance" pattern in the bottom (𝔅) sector do bottom quarks also thermalize at the LHC?
 will 𝔅 add more weight to the phase boundary?

A larger data sample available in Pb–Pb (5 TeV) and p-Pb (5, 8 TeV) in Run 2

Ambitious plans for Run 3, 4 ...characterization of deconfined medium (ALICE and LHCb upgrades targeted/crucial for p/Pb–Pb)

Backup slides

29

the original idea: Matsui & Satz, Phys. Lett. B 178 (1986) 178

"If high energy heavy-ion collisions lead to the formation of a hot quark-gluon-plasma, then color screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region."

"Debye screening": no J/ψ if $r_{J/\psi} > \lambda_D$ Refinements: "sequential suppression": Digal et al., PRD 64 (2001) 75 Debye length in QGP: $\lambda_D \simeq 1/(g(T) \cdot T)$ $r_{q\bar{q}} = f(T)$ (Lattice QCD results) $\Rightarrow q\bar{q}$ "thermometer" of QGP

A.Andronic

Thermal picture ($n_{partons} = 5.2T^3$ for 3 flavors) for T=500 MeV: $n_p \simeq 84/\text{fm}^3$, mean separation $\bar{r}=0.2$ fm $< r_{J/\psi}$

 J/ψ production at 5 TeV

30

A.Andronic

ALICE, arXiv:1606.08197

The current (syst.) uncertainties prevent a firm conclusion, but trend generically predicted by (re)generation models (uncertainties determined by $\sigma_{c\bar{c}}$, 5% here)

D-meson nuclear modification

31

pQCD models transport models ¥ ۲ R_{AA} ALICE 0-10% Pb-Pb, $\sqrt{s_{_{\rm NN}}}$ = 2.76 TeV 0-10% Pb-Pb, $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$ 1.2 • Average D⁰, D⁺, D^{*+} |y|<0.5 • Average D⁰, D⁺, D⁺⁺ |y|<0.5 \odot with pp $\textit{p}_{_{\rm T}}\text{-}{\rm extrap.}$ reference \circ with pp $p_{_{\rm T}}\text{-}{\rm extrap.}$ reference TAMU elastic Djordjevic Cao, Qin, Bass MC@sHQ+EPOS WHDG rad+coll 0.8 0.8 POWLANG Vitev, Rad+dissoc BAMPS el. **BAMPS** el.+rad Vitev, Rad PHSD ----- CUJET3.0 0.6 0.6 0.4 0.4 0.2 0.2 25 20 30 35 25 5 15 40 5 15 20 30 35 40 10 10 $p_{_{\mathrm{T}}}$ (GeV/c) p_{τ} (GeV/c)

ALICE, JHEP 03 (2016) 081

good description of data in theoretical models

Thermal fit at the LHC (Pb–Pb, 0-10%)

32

A.Andronic

 π , K^{\pm} , K^0 from charm included (0.7%, 2.9%, 3.1% for the best fit)

 $T = 156.5 \pm 1.5 \text{ MeV}, \quad \mu_B = 0.7 \pm 3.8 \text{ MeV}, \quad V_{\Delta y=1} = 5280 \pm 410 \text{ fm}^3$

Statistical hadronization of charm: method and inputs

33

A.Andronic

- Thermal model calculation (grand canonical) $T, \mu_B: \rightarrow n_X^{th}$
- $N_{c\overline{c}}^{dir} = \frac{1}{2}g_c V(\sum_i n_{D_i}^{th} + n_{\Lambda_i}^{th}) + g_c^2 V(\sum_i n_{\psi_i}^{th} + n_{\chi_i}^{th})$
- $N_{c\bar{c}} << 1 \rightarrow \underline{\text{Canonical}}$ (J.Cleymans, K.Redlich, E.Suhonen, Z. Phys. C51 (1991) 137):

$$N_{c\bar{c}}^{dir} = \frac{1}{2}g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{c\bar{c}}^{th} \longrightarrow g_c \text{ (charm fugacity)}$$

Outcome: $N_D = g_c V n_D^{th} I_1 / I_0$ $N_{J/\psi} = g_c^2 V n_{J/\psi}^{th}$

The only new input parameter: $N_{c\bar{c}}^{dir}$ (from experiment or pQCd) Minimal volume for QGP: V_{OGP}^{min} =100 fm³

Charmonium in the statistical hadronization model

34

the model predicts absolute yields (R_{AA} is calculated with the pp reference as for data)


```
2.5 < y < 4.0
```

 $\sigma_{c\bar{c}}$ from pp, $\sqrt{s}=7$ TeV, LHCb, NPB 871 (2013) 1 $p_T < 8 \, GeV/c, 2.0 < y < 4.5$ $\sigma_{c\bar{c}} = 1419 \pm 12(stat) \pm 116(syst) \pm 65(frag) \,\mu b$ energy scaling via FONLL pQCD shadowing calculations (R.Vogt): 0.71 \pm 0.10

 $V_{\Delta y=1}$: 2.76 TeV: 4120 fm³; 5.02 TeV: 5150 fm³

Syst. uncert. of data apply fully-correlated to the model calculations

D-meson production vs. multiplicity

