Hadronic contributions to $g-2$ from lattice $\mathbf{Q C D}$

Jeremy Green
NIC, DESY, Zeuthen

Second annual symposium
Helmholtz Programme "Matter and the Universe"
December 12-13, 2016

Outline

1. Brief overview of lattice activities at DESY
2. Introduction - muon $g-2$
3. Hadronic vacuum polarization
4. Hadronic light-by-light scattering
5. Outlook
...is a regularization of Euclidean-space QCD such that the path integral can be done fully non-perturbatively.

- Euclidean spacetime becomes a periodic hypercubic lattice, with spacing a and box size $L_{s}^{3} \times L_{t}$.
- Path integral over fermion degrees of freedom is done analytically, for each gauge configuration. Solving the Dirac equation with a fixed source yields a source-to-all quark propagator.
- Path integral over gauge degrees of freedom is done numerically using Monte Carlo methods to generate an ensemble of gauge configurations.
The $a \rightarrow 0$ and $L_{s}, L_{t} \rightarrow \infty$ extrapolations need to be taken by using multiple ensembles.

Lattice activities at DESY

- Broad research in lattice field theory
- lattice QCD
- algorithm and conceptual developments
- new approaches (e.g. tensor network techniques)
- Multi-level algorithm \rightarrow reduce exponential signal-to-noise problem
- Group plays leading and central role in two large European efforts:
- European Twisted Mass Collaboration (ETMC)
- Coordinated Lattice Simulations (CLS)

ALPHA Collaboration:

- HQET, B-physics
- final determination of strong coupling constant based on 3-flavour calculations
- lattice ensembles pushing toward physical quark masses

Lattice activities at DESY

ETMC:

- Nucleon sigma terms
- computed on one $N_{f}=2$ ensemble with physical m_{π}
- relevant for dark matter searches
- most precise results for σ_{s} and σ_{c}

Phys. Rev. Lett. 116, 252001 (2016), 1601.01624

- Nucleon structure:
- form factors
- moments of parton distribution functions
- direct calculation of parton distribution functions
- Muon anomalous magnetic moment
- Future outlook: more-physical calculations
- $N_{f}=2+1+1$ with correct π, K and D meson masses
- include QED and isospin breaking

Muon anomalous magnetic moment

A muon has magnetic moment $\vec{\mu}=g_{\mu} \frac{e}{2 m_{\mu}} \vec{S}$. The Dirac equation predicts $g_{\mu}=2$, but quantum effects produce a small deviation,
$a_{\mu} \equiv \frac{g_{\mu}-2}{2}=\left\{\begin{array}{l}116592089(63) \times 10^{-11} \\ 116591828(50) \times 10^{-11}\end{array}\right.$ experiment BNL E821, PRD 73, 072003 (2006) theory US "Snowmass" Self Study, 1311.2198
$\Delta a_{\mu}=(261 \pm 78) \times 10^{-11}$, a 3σ discrepancy.

- New experiments promise to reduce the uncertainty fourfold:
- Fermilab E989, using the same storage ring from BNL.
- J-PARC E34, using a new method with ultra-cold muons.
- The theoretical uncertainty should likewise be reduced.
- Hadronic effects are the dominant contributions.

Muon $g-2$: theory uncertainty

The two dominant sources of uncertainty are hadronic effects:
$3 \quad$ Hadronic vacuum polarization: $a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=6949(43) \times 10^{-11}$.

- Determined using experimental data on cross section for $e^{+} e^{-} \rightarrow$ hadrons.
- Very active field for lattice QCD calculations working toward an ab initio prediction with competitive uncertainty.

Hadronic light-by-light scattering: $a_{\mu}^{\mathrm{HLbL}}=105(26)$ or $116(39) \times 10^{-11}$.

- Determined using models that include meson exchange terms, charged meson loops, etc.
- Could benefit significantly with reliable input from the lattice.

Hadronic vacuum polarization (HVP) on the lattice

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right],
$$

where $f\left(Q^{2}\right)$ is a known kernel and the integrand peaks near $Q^{2}=\left(m_{\mu} / 2\right)^{2}$. Two main strategies:

1. Momentum space

$$
\begin{aligned}
\Pi_{\mu v}(Q) & \equiv \int d^{4} x e^{i Q \cdot x}\left\langle J_{\mu}(x) J_{v}(0)\right\rangle \\
& =\left(g_{\mu v} Q^{2}-Q_{\mu} Q_{v}\right) \Pi\left(Q^{2}\right)
\end{aligned}
$$

Cannot directly obtain $\Pi(0)$. Limited resolution at low Q^{2}, where $f\left(Q^{2}\right)$ is peaked, so constrained fitting is needed.
2. Time-momentum representation
D. Bernecker and H. B. Meyer,

Eur. Phys. J. A 47, 148 (2011)

$$
\begin{gathered}
G\left(x_{0}\right) \equiv-\frac{1}{3} \sum_{k=1}^{3} \int d^{3} x\left\langle J_{k}\left(x_{0}, x\right) J_{k}(0)\right\rangle, \\
\Pi\left(Q^{2}\right)-\Pi(0)=\int_{0}^{\infty} d x_{0} G\left(x_{0}\right) x_{0}^{2} g\left(Q x_{0}\right), \\
g(y) \equiv 1-\frac{4}{y^{2}} \sin ^{2}(y / 2)
\end{gathered}
$$

Challenge is understanding large- x_{0} behaviour of $G\left(x_{0}\right)$.

Timelike pion form factor

The time-momentum correlator has a spectral representation,

$$
G\left(x_{0}\right)=\int_{0}^{\infty} d \omega \omega^{2} \rho\left(\omega^{2}\right) e^{-\omega\left|x_{0}\right|}, \quad \rho(s)=\frac{1}{12 \pi^{2}} \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{4 \pi \alpha(s)^{2} /(3 s)} .
$$

At low energies, this is given by $\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)$, which depends on the timelike pion form factor $\left|F_{\pi}(\sqrt{s})\right|^{2}$. For $2 m_{\pi} \leq \sqrt{s} \leq 4 m_{\pi}$, this can be computed from finite-volume energy levels and matrix elements. H. B. Meyer, Phys. Rev. Lett. 107, 072002 (2011)

By separately computing $\left|F_{\pi}\right|^{2}$ and fitting it with a curve, we can replace the discrete low-energy finite-volume spectrum in $G\left(x_{0}\right)$ with a $\pi^{+} \pi^{-}$continuum, and improve the approach to the infinite-volume limit.

First step: compute the p-wave $\pi \pi$ scattering phase shift. Exploratory study with $m_{\pi}=437 \mathrm{MeV}$. F. Erben, JG, D. Mohler, H. Wittig, poster at Lattice 2016, 1611.06805

Hadronic contributions to the muon $g-2$

$O\left(\alpha^{2}\right):$
Leading order hadronic vacuum polarization.

$$
O\left(\alpha^{3}\right):
$$

Higher-order contributions from leading order HVP.

Leading-order
contribution from $O(\alpha)$ correction to HVP.

Included in the phenomenological leading-order HVP.

Hadronic light-by-light.

π^{0} contribution to HLbL scattering

About $2 / 3$ of theory prediction for a_{μ}^{HLbL} comes from π^{0} exchange diagrams, which dominate at long distances. Large contributions also come from η, η^{\prime}.

Their contribution to the four-point function:

$$
\begin{aligned}
& \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E, p_{4}^{0}}\left(p_{4} ; p_{1}, p_{2}\right) \\
& =-p_{1 \alpha} p_{2 \beta} p_{3 \sigma} p_{4 \tau}\left(\frac{\mathcal{F}_{12} \epsilon_{\mu_{1} \mu_{2} \alpha \beta} \mathcal{F}_{34} \epsilon_{\mu_{3} \mu_{4} \sigma \tau}}{\left(p_{1}+p_{2}\right)^{2}+m_{\pi}^{2}}+\frac{\mathcal{F}_{13} \epsilon_{\mu_{1} \mu_{3} \alpha \sigma} \mathcal{F}_{24} \epsilon_{\mu_{2} \mu_{4} \beta \tau}}{\left(p_{1}+p_{3}\right)^{2}+m_{\pi}^{2}}\right. \\
& \left.\quad+\frac{\mathcal{F}_{14} \epsilon_{\mu_{1} \mu_{4} \alpha \tau} \mathcal{F}_{23} \epsilon_{\mu_{2} \mu_{3} \beta \sigma}}{\left(p_{2}+p_{3}\right)^{2}+m_{\pi}^{2}}\right),
\end{aligned}
$$

where $p_{3}=-\left(p_{1}+p_{2}+p_{4}\right)$ and $\mathcal{F}_{i j}=\mathcal{F}\left(-p_{i}^{2},-p_{j}^{2}\right)$ is the $\pi^{0} \gamma^{*} \gamma^{*}$ form factor. Jeremy Green | DESY, Zeuthen | MUTAG 2016 | Page 11

Lattice calculation of the $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$ form factor

A. Gérardin, H. B. Meyer, A. Nyffeler, Phys. Rev. D 94, 074507 (2016), 1607.08174

In Minkowski space:
$M_{\mu v}\left(p, q_{1}\right)=i \int d^{4} x e^{i q_{1} x}\langle 0| T\left\{J_{\mu}(x) J_{v}(0)\right\}\left|\pi^{0}(p)\right\rangle=\epsilon_{\mu v \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta} \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(q_{1}^{2}, q_{2}^{2}\right)$,
where $p=q_{1}+q_{2}$. In Euclidean space on the lattice, compute

$$
M_{\mu \nu}^{E} \equiv-\int d \tau e^{\omega_{1} \tau} \int d^{3} z e^{-i \vec{q}_{1} \vec{z}}\langle 0| T\left\{J_{\mu}(\vec{z}, \tau) J_{\nu}(\overrightarrow{0}, 0)\right\}|\pi(p)\rangle
$$

Different models were fit to the lattice data, of which only LMD+V has the correct behaviour at large Q^{2} of $\mathcal{F}\left(-Q^{2}, 0\right)$ and $\mathcal{F}\left(-Q^{2},-Q^{2}\right)$.

Lattice calculation of the $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$ form factor

A. Gérardin, H. B. Meyer, A. Nyffeler, Phys. Rev. D 94, 074507 (2016), 1607.08174

Doubly virtual (on one ensemble)

Singly virtual (extrapolated to $m_{\pi}^{\text {phys }}, a=0$)

Preferred LMD+V fit model used to estimate the π^{0} exchange contribution to $g-2$:

$$
a_{\mu}^{\mathrm{HLbL}, \pi^{0}}=(65.0 \pm 8.3) \times 10^{-11},
$$

which fits well into the range of model calculations, $(50-80) \times 10^{-11}$.

Light-by-light scattering

Before computing a_{μ}^{HLLL}, start by studying light-by-light scattering by itself.

This has much more information than just a_{μ}^{HLLL}. We can:

- Compare against phenomenology.
- Test models used to compute a_{μ}^{HLbL}.

Some of these results were published in
JG, O. Gryniuk, G. von Hippel, H. B. Meyer, V. Pascalutsa, Phys. Rev. Lett. 115, 222003 (2015) [1507.01577]

Quark contractions for four-point function

Compute only the fully-connected contractions, with fixed kernels summed over x_{1} and x_{2} :

$$
\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\mathrm{pos}^{\prime}}\left(x_{4} ; f_{1}, f_{2}\right)=\sum_{x_{1}, x_{2}} f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)\left\langle J_{\mu_{1}}\left(x_{1}\right) J_{\mu_{2}}\left(x_{2}\right) J_{\mu_{3}}(0) J_{\mu_{4}}\left(x_{4}\right)\right\rangle
$$

Generically, need the following propagators:

- 1 point-source propagator from $x_{3}=0$

- 8 sequential propagators through x_{1}, for each μ_{1} and f_{1} or f_{1}^{*}
- 8 sequential propagators through x_{2}
- 32 double-sequential propagators through x_{1} and x_{2}, for each $\left(\mu_{1}, \mu_{2}\right)$ and $\left(f_{1}, f_{2}\right)$ or $\left(f_{1}^{*}, f_{2}^{*}\right)$

Kinematical setup

Obtain momentum-space Euclidean four-point function using plane waves:

$$
\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(p_{4} ; p_{1}, p_{2}\right)=\left.\sum_{x_{4}} e^{-i p_{4} \cdot x_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\text {pos' }^{\prime}}\left(x_{4} ; f_{1}, f_{2}\right)\right|_{f_{a}(x)=e^{-i p a \cdot x}}
$$

Thus, we can efficiently fix $p_{1,2}$ and choose arbitrary p_{4}.

- Full 4-point tensor is very complicated: it can be decomposed into 41 scalar functions of 6 kinematic invariants.
- Forward case is simpler:

$$
Q_{1} \equiv p_{2}=-p_{1}, \quad Q_{2} \equiv p_{4} .
$$

Then there are 8 scalar functions that depend on 3 kinematic invariants.

Forward LbL amplitude

Take the amplitude for forward scattering of transversely polarized virtual photons,

$$
\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, v\right)=\frac{e^{4}}{4} R_{\mu_{1} \mu_{2}} R_{\mu_{3} \mu_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(-Q_{2} ;-Q_{1}, Q_{1}\right)
$$

where $v=-Q_{1} \cdot Q_{2}$ and $R_{\mu \nu}$ projects onto the plane orthogonal to Q_{1}, Q_{2}.

A subtracted dispersion relation at fixed spacelike Q_{1}^{2}, Q_{2}^{2} relates this to the $\gamma^{*} \gamma^{*} \rightarrow$ hadrons cross sections $\sigma_{0,2}$:

$\mathcal{M}_{T T}\left(q_{1}^{2}, q_{2}^{2}, v\right)-\mathcal{M}_{T T}\left(q_{1}^{2}, q_{2}^{2}, 0\right)=\frac{2 v^{2}}{\pi} \int_{v_{0}}^{\infty} d v^{\prime} \frac{\sqrt{v^{\prime 2}-q_{1}^{2} q_{2}^{2}}}{v^{\prime}\left(v^{\prime 2}-v^{2}-i \epsilon\right)}\left[\sigma_{0}\left(v^{\prime}\right)+\sigma_{2}\left(v^{\prime}\right)\right]$
This is model-independent and will allow for systematically improvable comparisons between lattice and experiment.

Model for $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow\right.$ hadrons)

V. Pascalutsa, V. Pauk, M. Vanderhaeghen, Phys. Rev. D 85 (2012) 116001

Include single mesons and $\pi^{+} \pi^{-}$final states:

$$
\sigma_{0}+\sigma_{2}=\sum_{M} \sigma\left(\gamma^{*} \gamma^{*} \rightarrow M\right)+\sigma\left(\gamma^{*} \gamma^{*} \rightarrow \pi^{+} \pi^{-}\right)
$$

Mesons:

- pseudoscalar $\left(\pi^{0}, \eta^{\prime}\right)$
- scalar $\left(a_{0}, f_{0}\right)$
- axial vector $\left(f_{1}\right)$
- tensor $\left(a_{2}, f_{2}\right)$
$\sigma\left(\gamma^{*} \gamma^{*} \rightarrow M\right)$ depends on the meson's:
- mass m and width Γ
- two-photon decay width $\Gamma_{\gamma \gamma}$
- two-photon transition form factor $F\left(q_{1}^{2}, q_{2}^{2}\right)$
assume $F\left(q_{1}^{2}, q_{2}^{2}\right)=F\left(q_{1}^{2}, 0\right) F\left(0, q_{2}^{2}\right) / F(0,0)$
Use scalar QED dressed with form factors for $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow \pi^{+} \pi^{-}\right)$.

$\mathcal{M}_{T T}:$ dependence on v and Q_{2}^{2}

For scalar, tensor mesons there is no data from expt; we use

$$
F\left(q^{2}, 0\right)=F\left(0, q^{2}\right)=\frac{1}{1-q^{2} / \Lambda^{2}}
$$

with Λ set by hand to 1.6 GeV
Changing Λ by $\pm 0.4 \mathrm{GeV}$ adjusts curves by up to $\pm 50 \%$.

Points: lattice data.
Curves: dispersion relation + model for cross section.

$\mathcal{M}_{T T}:$ dependence on v and m_{π}

Points: lattice data.
Curves: dispersion relation + model for cross section. In increasing order:

- π^{0}
$-\pi^{0}+\eta^{\prime}$
- full model
- full model + high-energy $\sigma(\gamma \gamma \rightarrow$ hadrons $)$ at physical m_{π}

Eight forward-scattering amplitudes

V. M. Budnev, V. L. Chernyak and I. F. Ginzburg, Nucl. Phys. B 34, 470 (1971)
V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rept. 15, 181 (1975)

$$
\begin{aligned}
\mathcal{M}^{\mu^{\prime} v^{\prime}, \mu v}\left(q_{1}, q_{2}\right)= & R^{\mu \mu^{\prime}} R^{v v^{\prime}} \mathcal{M}_{T T} \\
& +\frac{1}{2}\left[R^{\mu v} R^{\mu^{\prime} v^{\prime}}+R^{\mu v^{\prime}} R^{\mu^{\prime} v}-R^{\mu \mu^{\prime}} R^{v v^{\prime}}\right] \mathcal{M}_{T T}^{\tau} \\
& +\left[R^{\mu v} R^{\mu^{\prime} v^{\prime}}-R^{\mu v^{\prime}} R^{\mu^{\prime} v}\right] \mathcal{M}_{T T}^{a} \\
& +R^{\mu \mu^{\prime}} k_{2}^{v} k_{2}^{v^{\prime}} \mathcal{M}_{T L}+k_{1}^{\mu} k_{1}^{\mu^{\prime}} R^{v v^{\prime}} \mathcal{M}_{L T}+k_{1}^{\mu} k_{1}^{\mu^{\prime}} k_{2}^{v} k_{2}^{v^{\prime}} \mathcal{M}_{L L} \\
& -\left[R^{\mu v} k_{1}^{\mu^{\prime}} k_{2}^{v^{\prime}}+R^{\mu v^{\prime}} k_{1}^{\mu^{\prime}} k_{2}^{v}+\left(\mu v \leftrightarrow \mu^{\prime} v^{\prime}\right)\right] \mathcal{M}_{T L}^{a} \\
& -\left[R^{\mu v} k_{1}^{\mu^{\prime}} k_{2}^{v^{\prime}}-R^{\mu v^{\prime}} k_{1}^{\mu^{\prime}} k_{2}^{v}+\left(\mu v \leftrightarrow \mu^{\prime} v^{\prime}\right)\right] \mathcal{M}_{T L}^{\tau}
\end{aligned}
$$

where R is a projector onto transverse polarizations and k_{a} are longitudinal polarization vectors.

Eight forward-scattering amplitudes: data

Quark contractions: relative importance

Consider the charge factors, with $q_{u}=2 / 3, q_{d}=q_{s}=-1 / 3$:

diagram	factor	$N_{f}=2$	$N_{f}=3$
(4)	$\sum_{f} q_{f}^{4}$	$17 / 81$	$18 / 81$
$(2,2)$	$\left(\sum_{f} q_{f}^{2}\right)^{2}$	$25 / 81$	$36 / 81$
$(3,1)$	$\left(\sum_{f} q_{f}^{3}\right)\left(\sum_{f} q_{f}\right)$	$7 / 81$	0
$(2,1,1)$	$\left(\sum_{f} q_{f}^{2}\right)\left(\sum_{f} q_{f}\right)^{2}$	$5 / 81$	0
$(1,1,1,1)$	$\left(\sum_{f} q_{f}\right)^{4}$	$1 / 81$	0

It is also argued that with only the fully-connected diagrams, the η^{\prime} falsely appears with the mass of the pion, so that effectively the π^{0} contribution is enhanced by a factor of 34/9. J. Bijnens, J. Relefors, JHEP 1609,113 (2016)

$(2,2)$ quark-disconnected contractions

Evaluate one of the quark loops using stochastic estimation.
Need the following propagators:

- 1 point-source propagator from $x_{3}=0$
- 1 noise-source propagator
- 1 noise-momentum-source propagator

Preliminary results for unsubtracted $\mathcal{M}_{T T}$: Large finite-volume effect!

fully-connected

(2,2)-disconnected

$(2,2)$ quark-disconnected contractions

Evaluate one of the quark loops using stochastic estimation.
Need the following propagators:

- 1 point-source propagator from $x_{3}=0$
- 1 noise-source propagator
- 1 noise-momentum-source propagator

Preliminary results for subtracted $\mathcal{M}_{T T}$:

fully-connected

(2,2)-disconnected

Strategy for muon $g-2$: kernel

In Euclidean space, give muon momentum $p=i m \hat{\epsilon}, \hat{\epsilon}^{2}=1$. Apply QED Feynman rules and isolate $F_{2}(0)$; obtain

$$
a_{\mu}^{\mathrm{HLbL}}=\int d^{4} x d^{4} y \mathcal{L}_{[\rho, \sigma] ; \mu \nu \lambda}(\hat{\epsilon}, x, y) i \hat{\Pi}_{\rho ; \mu \nu \lambda \sigma}(x, y),
$$

where

$$
\hat{\Pi}_{\rho ; \mu \nu \lambda \sigma}\left(x_{1}, x_{2}\right)=\int d^{4} x_{4}\left(i x_{4}\right)_{\rho}\left\langle J_{\mu}\left(x_{1}\right) J_{v}\left(x_{2}\right) J_{\lambda}(0) J_{\sigma}\left(x_{4}\right)\right\rangle .
$$

The integrand for a_{μ} is a scalar function of 5 invariants: $x^{2}, y^{2}, x \cdot y, x \cdot \epsilon$, and $y \cdot \epsilon$, so 3 of the 8 dimensions in the integral are trivial. Five dimensions is still too many. Result is independent of $\hat{\epsilon}$, so we can eliminate it by averaging in the integrand:

$$
\mathcal{L}(\hat{\epsilon}, x, y) \rightarrow \overline{\mathcal{L}}(x, y) \equiv\langle\mathcal{L}(\hat{\epsilon}, x, y)\rangle_{\hat{\epsilon}}
$$

Then the integrand depends only on x^{2}, y^{2}, and $x \cdot y$.

Test of position-space kernel: π^{0} contribution

N. Asmussen, JG, H. B. Meyer, A. Nyffeler, 1609.08454

- Using a VMD model for $\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}$, work out the π^{0}-exchange contribution to $\hat{\Pi}(x, y)$.
- Integrate it with the kernel $\overline{\mathcal{L}}(x, y)$ to compute $a_{\mu}^{\mathrm{HLLL}, \pi^{0}}$, using a cutoff $|x|^{\max }=4.05 \mathrm{fm}$ and varying $|y|^{\text {max }}$.
- Compare against the result computed in momentum space.

Strategy for muon $g-2$: lattice

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}} & =\int d^{4} x \int d^{4} y d^{4} z \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)(-z)_{\rho}\left\langle J_{\mu}(x) J_{v}(y) J_{\lambda}(0) J_{\sigma}(z)\right\rangle \\
& =2 \pi^{2} \int_{0}^{\infty} x^{3} d x \int d^{4} y d^{4} z \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)(-z)_{\rho}\left\langle J_{\mu}(x) J_{v}(y) J_{\lambda}(0) J_{\sigma}(z)\right\rangle .
\end{aligned}
$$

Evaluate the y and z integrals in the following way:

1. Fix local currents at the origin and x, and compute point-source propagators.
2. Evaluate the integral over z using sequential propagators.
3. Contract with $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$ and sum over y.

The above has similar cost to evaluating scattering amplitudes at fixed p_{1}, p_{2}. Do this several times to perform the one-dimensional integral over $|x|$.

Summary and outlook

- Significant progress is being made in lattice QCD calculations aiming to reduce the leading theoretical uncertainties of the muon $g-2$.
- The contribution from the fully-connected four-point function to the light-by-light scattering amplitude can be efficiently evaluated if two of the three momenta are fixed.
- Forward-scattering case is related to $\sigma\left(\gamma^{*} \gamma^{*} \rightarrow\right.$ hadrons); lattice is consistent with phenomenology, within the latter's large uncertainty.
- For typical Euclidean kinematics the π^{0} contribution is not dominant.
- We have a position-space kernel for computing the leading-order HLbL contribution to the muon $g-2$.
Work is ongoing to integrate it into a lattice calculation.
- Phenomenology indicates the π^{0} contribution is dominant for $g-2$; reaching this regime (physical m_{π}, large volumes) may be challenging on the lattice.
- In the meantime, calculations of the $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$ form factor should improve the reliability of phemonemological values for a_{μ}^{HLbL}.

