

Unitarization and Simplified Models for Vector Boson Scattering

Marco Sekulla

MU Programmtag 2016

December 12, 2016

Institute of Theoretical Physics (ITP)

www.kit.edu

Outline

VBS and the Standard Model

VBS and the Standard Model

2014: Vector boson scattering is observed

 $\Rightarrow \mbox{ The Higgs mechanism} \\ \mbox{ works as expected} \\$

higgstan.com VBS in the SM Higgs exchange cancels the energy rise in VBS \Rightarrow restores unitarity if $m_h \leq \sqrt{4\pi\sqrt{2}/G_F}$ Lee,Quigg,Thacker 1977 $i_{1,1,1,1,1}$ Lee,Quigg,Thacker 1977 $i_{1,1,1,1,1}$ Lee,Quigg,Thacker 1977 $i_{2,1,1,1,1}$ Lee,Quigg,Thacker 1977 $i_{2,1,1,1}$ Lee,Quigg,Thacke

VBS at the LHC

- Two energetic jets in the forward and backward direction (p_T > 20 GeV)
- Large rapidity seperation and large invariant mass of the two tagging jets (m_{jj} > 500 GeV, |Δy_{jj}| > 2.4)

VBS at the LHC

- VBS amplitude is bounded (weakly int.)
- \Rightarrow Cross section suppressed by PDF
 - Look for deviation from the SM prediction
- \rightarrow Sensitive test of new physics contributions

Modelling Physics beyond the SM

Desirable features of a generic SM extension

- Recovers the SM in an appropriate limit
- Respects established symmetries: $SU(3)_C \times SU(2)_L \times U(1)_Y$
- Captures any new physics (+ guidance where physics impact is large)
- Possibility to calculate radiative corrections

Effective Field Theory (EFT)

Longitudinal EFT Operators

Anomalous couplings effecting longitudinal VBS

Linear Higgs matrix representation

$$\mathbf{H} = \frac{1}{2} \begin{pmatrix} \mathbf{v} + \mathbf{h} - \mathrm{i}\mathbf{w}^3 & -\mathrm{i}\sqrt{2}\mathbf{w}^+ \\ -\mathrm{i}\sqrt{2}\mathbf{w}^- & \mathbf{v} + \mathbf{h} + \mathrm{i}\mathbf{w}^3 \end{pmatrix}$$

$$F_{HD} = f_{HD} / \Lambda^2$$

$$F_{S,0} = (f_{S,0} + f_{S,2}) / \Lambda^4$$

$$F_{S,1} = f_{S,1} / \Lambda^4$$

Differiential cross section at LHC (14 ${\rm TeV}$)

- AQGC amplitudes rise with energy ~ E⁴
- $\rightarrow D = 8$ Operators cancel the PDF suppression
 - Unitarity obviously violated (at which energy?)

Unitarity

- Unitarity of scattering matrix $S = 1 + i\mathbf{T} : \rightarrow i(\mathbf{T} \mathbf{T}^{\dagger}) = \mathbf{TT}^{\dagger}$
- Angular momentum conservation: conventionally normalized partial wave amplitudes a_l
- Onitarity implies

Argand-circle condition

$$\left|a_{\ell}(s) - \frac{\mathrm{i}}{2}\right| \leq \frac{1}{2}$$

→ Outside: unitarity broken
 → Inside/On: unitarity fulfilled
 inside: inelastic scattering (<)
 on: elastic scattering (=)

 $\begin{aligned} & |\text{Re}\left(a_{\ell}(s)\right)| \leq \frac{1}{2} \\ \Rightarrow & \text{Conservative EFT validity} \\ & \text{bound } s_{\text{max}} \end{aligned}$

Isospin-Spin Eigenamplitudes

Weak boson interaction matrix has non-diagonal elements (GBET):

- \Rightarrow Use isospin $SU_{C}(2)$ to diagonalize interaction matrix
 - Partial wave decomposition into isospin-spin eigenamplitudes $a_{I\ell}$
 - All $a_{I\ell}$ have to fulfill the Argand-circle condition
 - Example for $a(W^+W^+ \rightarrow W^+W^+)$

$$a(w^+w^+ \rightarrow w^+w^+) = a_{20}(s) - 10a_{22}(s) - 15a_{22}(s)\frac{t^2 + u^2}{s^2}$$

Unitarity bounds of Dim-8 Operators

- EFT for AQGC at current experimental bounds violates unitarity below 1 TeV (red band: variation of a_{ll})
- Naive EFT description is unphysical within LHC energy reach
 Extrapolation?

Cut-Off Method

- Cut-Off function: $\Theta\left(\Lambda_{C}^{2}-s\right)$
 - On data and complete MC-simulated events
 - Requirement: experimental reconstruction of s
 - Only on EFT part in MC-simulation
 - Creates unphysical kink in exp. accessible region
 - ! Beware of using Neural Network etc to improve sensitivity
- Choosing Λ_C :
 - $\mathbf{O} \Lambda_{\mathcal{C}} = \mathbf{s}_{max}$
 - 2 Scan over Λ_C for different UV-complete models

Contino, Falkowski et al 2016

Dipole Form Factor

Form-Factor:
$$\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^{-p}$$

Baur, Zeppenfeld 1988

- p is chosen accordingly to the EFT-operator dimension
- Λ_{FF} set to highest possible value that satisfy real unitarity bound (0th)
- Can be easily implemented for arbitrary anomalous operator
- Needs "Fine Tuning"
- Complete amplitude receives suppression factor

Direct T-Matrix Unitarization

- Linear construction "Stereographic": $T = \frac{\text{Re}T_0}{1 \frac{1}{2}T_0^4}$
- Oircular construction "Thales":

Start from real amplitude a_0 :

- Unitary amplitude left invariant
- But scheme dependence for complex a₀
- Example: Higgs-less amplitude

T = - $\operatorname{Re}\left(\frac{1}{T_{0}}\right) - \frac{\mathrm{i}}{2}\mathbf{1}$ Start from complex amplitude *a*₀: $\operatorname{Im}\left[a_{\ell}\right]$ Re [a] a_{00} in heavy Higgs model bare 1.5unitarized unit. limit $\overline{(s)}_{a}$ 1.0 0.50.5 1.5 2.0 2.5 30

 $\sqrt{s}/(4\sqrt{\pi}v)$

T-matrix Unitarization

- \Rightarrow Saturation of isospin-spin amplitudes at their unitarity limit
 - Leaves scattering matrices, which satisfy unitarity, invariant
 - Introducing model dependence

Comparison for $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu j j$

EFT parameters: $F_{S,1} = 400 \, TeV^{-4} \Rightarrow s_{max} = 780 \, \text{GeV}$ FF parameters: p = 2, $\Lambda_{FF} = 832 \, \text{GeV}$

Scenarios for New Physics at High Energies

The rise of an amplitude (AQGC) may be an expansion of a resonance

Resonances in VBS: Quantum Numbers

Spin

- Just consider Spin 0,2
- Spin 1 has different pheno (W/Z-mixing)

Symmetry $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$ $(0,0) \rightarrow 0$ $(1,1) \rightarrow 2+1+0$

Integrate out Isoscalar-scalar Resonance

Simple example: Extension via scalar singlet σ:

$$\mathcal{L}_{\sigma} = -\frac{1}{2}\sigma \left(m_{\sigma}^{2} + \partial^{2}\right)\sigma + \sigma J_{\sigma}$$
$$J_{\sigma} = F_{\sigma} \operatorname{tr} \left[\left(\mathbf{D}_{\mu} \mathbf{H}\right)^{\dagger} \mathbf{D}^{\mu} \mathbf{H} \right] \quad \text{where} \quad F_{\sigma} \propto \frac{1}{\Lambda}$$

- Scalar mass is beyond experimental energy reach
- Integrate out heavy scalar resonance
- ⇒ Effective Lagrangian

$$\mathcal{L}_{\sigma}^{\text{eff}} = \frac{F_{\sigma}^2}{2m_{\sigma}^2} \operatorname{tr}\left[\left(\mathbf{D}_{\mu} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\mu} \mathbf{H} \right] \operatorname{tr}\left[\left(\mathbf{D}_{\nu} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\nu} \mathbf{H} \right]$$

Leads to following AQGC

$$F_{\mathcal{S},1} = \frac{F_{\sigma}^2}{2m_{\sigma}^2}, \qquad \qquad \mathbf{H} = \frac{1}{2} \begin{pmatrix} v+h+\mathrm{i}w^3 & -\mathrm{i}\sqrt{2}w^+ \\ -\mathrm{i}\sqrt{2}w^- & v+h+\mathrm{i}w^3 \end{pmatrix}$$

Comparison of Simplified Models and EFT

EFT fails at resonance

- AQGC describes the rise of a resonance
- Energy validity range of theory is increased

Comparison of Simplified Models and EFT

- EFT fails at resonance
- AQGC describes the rise of a resonance
- Energy validity range of theory is increased

Complete LHC process at $\sqrt{s} = 14 \text{ TeV}$

Summary and Outlook

- Effective theory: limited applicability for quartic gauge couplings
- Scheme to avoid unitarity violation: Θ, Form-Factor or T-Matrix
- Frameworks for quantitative tests of the SM version of electroweak interactions which matches the low-energy EFT
 - $\checkmark \mathcal{O}_{HD}, \mathcal{O}_{S,0}, \mathcal{O}_{S,1}, \mathcal{O}_{T,0}, \mathcal{O}_{T,1} \text{ and } \mathcal{O}_{T,2}$
- \blacksquare Realization: generic resonances \rightarrow simplified model
- \Rightarrow Extension for EFT by resonances

	isoscalar	isotensor
scalar	\checkmark	\checkmark
tensor	\checkmark	\checkmark

- Working: Implementation of T-matrix for generic EFT operators and resonances within VBS
- Working: Unitarization for $V \rightarrow VVV$

Backup Slides

23 12.12.2016 M.Sekulla MU Programmtag 2016, Mainz Unitarization and Simplified Models for Vector Boson Scattering

K Matrix

Cayley Transform

Original K Matrix algorithm

Gupta, 1951/1981

- a_0 : Compute T_0 matrix perturbatively
- a_K: Reconstruct K matrix order by order
- a: Insert into S matrix formula, without expanding again $a = \frac{a_k}{1 ia_k}$

Relies on perturbation theory \Rightarrow Compute unitarized T matrix directly

T-Matrix for transversal couplings

provided by C. Fleper(WHIZARD)

Implementation of transversal couplings in validation
 Example: L_{T,1} = g⁴ tr [W_{αμ}W^{μβ}] tr [W_{βν}W^{να}]

Adding additional heavy Higgs

Adding additional heavy Higgs with mass m_H and coupling g_{HVV}
 To satisfy unitarity: g_{hVV} = g'_{hVV} + g_{HVV}

• Unitarity gives bounds to $m_H \leq m_H^B(g_{HVV}, m_h)$

Modified coupling for light Higgs as compared to SM
 For generic resonances → Simplified models

Adding additional heavy Higgs

provided by D. Zeppenfeld (VBFNLO)

Modified coupling for light Higgs as compared to SM
 For generic resonances → Simplified models

Guideline for Simplified Models

Introduction of generic resonances

- Use EFT-framework
- Introducing custodial $SU(2)_C$ symmetry $m_Z \approx m_W$
- Allow resonances in all accessible spin/isospin channels (here: only Higgs sector)
- Include extra anomalous couplings (reproduce unitary two Higgs model with $F_{HD} = -\frac{2}{v^2} \left(1 \pm \sqrt{\frac{v^2}{4}F_{\sigma}^2 + 1}\right)$)
- Beyond the resonance, the amplitude may eventually rise
- ⇒ Apply T-matrix unitarization scheme

Resonance width and corresponding AQGC

• Use width as parameter instead coupling ($imes m^3/(32\pi)F^2$)

 Corresponding AQGC (×32πΓ/m⁵) (transversal spin-2 coupling supressed)

	σ	ϕ	f	X
$F_{S,0}$	_	2	15	5
<i>F_{S,1}</i>	<u>1</u> 2	$-\frac{1}{2}$	-5	-35

Overview of WHIZARD-models for VBS

- Model including all dim 6 operators of Warsaw basis: SM_dim6
- Models with T-matrix for longitudinal (transversal) couplings:

Model	SM-Higgs	Resonances	EFT representation
NoH_rx	Х	Form factor	Non-linear
SM_rx	\checkmark	Form factor	Non-linear
AltH	Х	Fields	Non-linear
SSC	\checkmark	Fields	Non-linear
SSC_2	\checkmark	Fields	Linear
SSC_AltT	\checkmark	Fields	Linear

- ! Resonances described by Form factos will neglect the induced transversal couplings of spin 2 particles (scalars are ok)
- The linear EFT-representation will give rise to couplings between Higgs and resonances or anomalous Higgs-VB and 4-Higgs couplings
- Model to calculate Isospin-Spin bounds: SM_ul

Custodial Symmetry

$$\beta' rac{v^2}{8} \operatorname{tr} \left[T \mathbf{V}_{\mu} \right] \operatorname{tr} \left[T \mathbf{V}^{\mu} \right]$$

- Free parameter $\beta' = \beta'(\rho_*)$
- Experimental data constrains $\rho_* = \frac{m_W^2}{c_*^2 m_z^2}$:

$$ightarrow \ eta'(
ho_*\equiv 1)=0$$

- Impose approximate symmetry to forbid above term
- $\Rightarrow SU(2)_L \times U(1)_Y \rightarrow SU(2)_L \times SU(2)_R$

Fermionic sector

Bosonic sector

Very strong violation due large top mass

- Broken by coupling $B\tau_3 U \propto s_w^2$
- \Rightarrow Only small violation of $M_W = M_Z$
- Higgs mechanism: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$

Lagrangian of Resonances

1 _

$$\mathcal{L}_{\sigma} = -\frac{1}{2}\sigma \left(M_{\sigma}^{2} + \partial^{2}\right)\sigma + \sigma J_{\sigma}$$

$$\mathcal{L}_{\phi} = \frac{1}{2} \left[-\frac{1}{2}\operatorname{tr} \left[\Phi \left(m_{\phi} + \partial^{2}\right)\Phi\right] + \operatorname{tr} \left[\Phi J_{\phi}\right]\right]$$

$$\mathcal{L}_{f} = \mathcal{L}_{kin} - \frac{m_{f}^{2}}{2}f_{\mu\nu}f^{\mu\nu} + f_{\mu\nu}J_{f}^{\mu\nu}$$

$$\mathcal{L}_{X} = \mathcal{L}_{kin} - \frac{m_{X}^{2}}{4}\operatorname{tr} \left[\mathbf{X}_{\mu\nu}\mathbf{X}^{\mu\nu}\right] + \frac{1}{2}\operatorname{tr} \left[\mathbf{X}_{\mu\nu}\mathbf{J}_{X}^{\mu\nu}\right]$$

$$\mathcal{F}_{\sigma}^{\parallel}\operatorname{tr} \left[\left(\mathbf{D}_{\mu}\mathbf{H}\right)^{\dagger}\mathbf{D}^{\mu}\mathbf{H}\right]$$

$$\mathcal{F}_{\phi}^{\parallel}\left[\left(\mathbf{D}_{\mu}\mathbf{H}\right)^{\dagger}\otimes\mathbf{D}^{\mu}\mathbf{H} - \frac{\tau^{aa}}{6}\operatorname{tr} \left[\left(\mathbf{D}_{\mu}\mathbf{H}\right)^{\dagger}\mathbf{D}^{\mu}\mathbf{H}\right]$$

$$\begin{aligned} J_{\phi} &= F_{\phi}^{\parallel} \left[\left(\mathbf{D}_{\mu} \mathbf{H} \right)^{\dagger} \otimes \mathbf{D}^{\mu} \mathbf{H} - \frac{\tau^{aa}}{6} \operatorname{tr} \left[\left(\mathbf{D}_{\mu} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\mu} \mathbf{H} \right] \right] \\ J_{f}^{\mu\nu} &= F_{f}^{\parallel} \left(\operatorname{tr} \left[\left(\mathbf{D}^{\mu} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\nu} \mathbf{H} \right] - \frac{c_{f}^{\parallel}}{4} g^{\mu\nu} \operatorname{tr} \left[\left(\mathbf{D}_{\rho} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\rho} \mathbf{H} \right] \right) \\ J_{X}^{\mu\nu} &= F_{X}^{\parallel} \left[\frac{1}{2} \left(\left(\mathbf{D}^{\mu} \mathbf{H} \right)^{\dagger} \otimes \mathbf{D}^{\nu} \mathbf{H} + \left(\mathbf{D}^{\nu} \mathbf{H} \right)^{\dagger} \otimes \mathbf{D}^{\mu} \mathbf{H} \right) - \frac{c_{X}^{\parallel}}{4} g^{\mu\nu} \left(\mathbf{D}_{\rho} \mathbf{H} \right)^{\dagger} \otimes \mathbf{D}^{\rho} \mathbf{H} \\ &- \frac{\tau^{aa}}{6} \left(\operatorname{tr} \left[\left(\mathbf{D}^{\mu} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\nu} \mathbf{H} \right] - \frac{c_{X}^{\parallel}}{4} g^{\mu\nu} \operatorname{tr} \left[\left(\mathbf{D}_{\rho} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\rho} \mathbf{H} \right] \right) \end{aligned} \right] \end{aligned}$$

Isospin-Spin Eigenamplitudes

$$\begin{split} a(w^+w^+ \to w^+w^+) &= a_{02}(s) - 10a_{22}(s) \\ &+ 15a_{22}(s)\frac{t^2 + u^2}{s^2} \\ a(w^+w^- \to zz) &= \frac{1}{3}\left(a_{00}(s) - a_{20}(s)\right) - \frac{10}{3}\left(a_{02}(s) - a_{22}(s)\right) \\ &+ 5\left(a_{02}(s) - a_{22}(s)\right)\frac{t^2 + u^2}{s^2} \\ a(w^+z \to w^+z) &= \frac{1}{2}a_{20}(s) - 5a_{22}(s) \\ &+ \left(-\frac{3}{2}a_{11}(s) + \frac{15}{2}a_{22}(s)\right)\frac{t^2}{s^2} \\ &+ \left(\frac{3}{2}a_{11}(s) + \frac{15}{2}a_{22}(s)\right)\frac{u^2}{s^2} \end{split}$$

Isospin-Spin Eigenamplitudes

$$\begin{aligned} a(w^+w^- \to w^+w^-) &= \frac{1}{6} \left(2a_{00}(s) + a_{20}(s) \right) - \frac{5}{3} \left(2a_{02}(s) + a_{22}(s) \right) \\ &+ \left(5a_{02}(s) - \frac{3}{2}a_{11}(s) + \frac{5}{2}a_{22}(s) \right) \frac{t^2}{s^2} \\ &+ \left(5a_{02}(s) + \frac{3}{2}a_{11}(s) + \frac{5}{2}a_{22}(s) \right) \frac{u^2}{s^2} \\ a(zz \to zz) &= \frac{1}{3} \left(a_{00}(s) + 2a_{20}(s) \right) - \frac{10}{3} \left(a_{02}(s) + 2a_{22}(s) \right) \\ &+ 5 \left(a_{02}(s) + 2a_{22}(s) \right) \frac{t^2 + u^2}{s^2} \end{aligned}$$

Bounds on Eigenamplitudes

AQGC amplitudes (GBET):

$$\begin{aligned} a_{00}(s) &= \frac{1}{6} \left(7F_{S,0} + 11F_{S,1} \right) s^2 \\ a_{02}(s) &= \frac{1}{30} \left(2F_{S,0} + F_{S,1} \right) s^2 \\ a_{11}(s) &= \frac{1}{12} \left(F_{S,0} - 2F_{S,1} \right) s^2 \\ a_{20}(s) &= \frac{1}{3} \left(2F_{S,0} + F_{S,1} \right) s^2 \\ a_{22}(s) &= \frac{1}{60} \left(2F_{S,0} + F_{S,1} \right) s^2 \end{aligned}$$

 $\begin{array}{l} a_{20} \text{ bounds} \\ F_{S,0} = F_{S,1} = 480 \text{ TeV}^{-4} \\ = (0.214 \text{ TeV})^{-4} \\ \sqrt{s} \lesssim 2.95 \cdot F_{S,0}^{-\frac{1}{4}} \approx 0.65 \text{ TeV} \\ \sqrt{s} \lesssim 3.50 \cdot F_{S,1}^{-\frac{1}{4}} \approx 0.75 \text{ TeV} \end{array}$

 Bounds depend on linear combination of AQGC (Assumption: Isospin/SU(2)_C is preserved)

Algorithm for T-matrix

- Start with input model
- $\mathcal{L}_{S,1} = F_{S,1} \operatorname{tr} \left[\left(\mathbf{D}_{\mu} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\mu} \mathbf{H} \right] \cdot \operatorname{tr} \left[\left(\mathbf{D}_{\nu} \mathbf{H} \right)^{\dagger} \mathbf{D}^{\nu} \mathbf{H} \right]$
- leads to the Feynman rules in unitary gauge
 W⁺_{µ1} W⁺_{µ2} W⁻_{µ3} W⁻_{µ4} : ^{ig⁴v⁴}/₈ [F_{S,1} (g_{µ1µ3}g_{µ2µ4} + g_{µ1µ4}g_{µ2µ3})]
 Extract strong-interaction part in Goldstone limit (Feynman Rules)
 - $z(p_1)z(p_2)w^+(p_3)w^-(p_4):$ $2iF_{S,1}(p_1\cdot p_2)(p_3\cdot p_4)$
- Use of custodial/crossing symmetry to calculate $a_{l\ell}^0$
- Unitarize via T Matrix projection: $a_{I\ell}(s) = \left[\mathsf{Re}\left(a_{I\ell}^{\mathsf{0}}(s)^{-1} \right) \mathrm{i} \right]^{-1}$
- Calculate counter terms: $\Delta a_{I\ell} = a_{I\ell} a^0_{I\ell}$
- Re-insert s-channel correction as form factor into Feynman rules
- + Extrapolate off-shell

 $W_{\mu_{1}}^{\pm}W_{\mu_{2}}^{\pm} \rightarrow W_{\mu_{3}}^{\pm}W_{\mu_{4}}^{\pm}: \quad 8\pi g^{4}v^{4} \left[\left(\Delta a_{02}(s) - 10\Delta a_{22}(s) \right) \frac{g_{\mu_{1}\mu_{2}}g_{\mu_{3}\mu_{4}}}{s^{2}} + 15\Delta a_{22}(s) \frac{g_{\mu_{1}\mu_{3}}g_{\mu_{2}\mu_{4}} + g_{\mu_{1}\mu_{4}}g_{\mu_{2}\mu_{3}}}{s^{2}} \right] = 0$

Comparison of Higgsless amplitude

! To calculate Λ_{FF} , the limit $|a_{\ell}| < 1$ was used instead of the conventional Re $(a_{\ell}) < 0.5$

Conversions

Non-linear representation

Applequist, Bernard 1980

$$\begin{split} \mathcal{L}_{\alpha_4} &= \alpha_4 \operatorname{tr} \left[\boldsymbol{\mathsf{V}}_{\mu} \boldsymbol{\mathsf{V}}_{\nu} \right] \operatorname{tr} \left[\boldsymbol{\mathsf{V}}^{\mu} \boldsymbol{\mathsf{V}}^{\nu} \right] \\ \mathcal{L}_{\alpha_5} &= \alpha_5 \operatorname{tr} \left[\boldsymbol{\mathsf{V}}_{\mu} \boldsymbol{\mathsf{V}}^{\mu} \right] \operatorname{tr} \left[\boldsymbol{\mathsf{V}}_{\nu} \boldsymbol{\mathsf{V}}^{\nu} \right] \end{split}$$

Higgs-Doublet representation

Rauch, Zeppenfeld

$$\begin{split} \mathcal{O}_{S,0} &= \frac{f_{S,0}}{\Lambda^4} \left[\left(\mathbf{D}_{\mu} \Phi \right)^{\dagger} \mathbf{D}_{\nu} \Phi \right] \left[\left(\mathbf{D}^{\mu} \Phi \right)^{\dagger} \mathbf{D}^{\nu} \Phi \right] \\ \mathcal{O}_{S,1} &= \frac{f_{S,1}}{\Lambda^4} \left[\left(\mathbf{D}_{\mu} \Phi \right)^{\dagger} \mathbf{D}^{\mu} \Phi \right] \left[\left(\mathbf{D}_{\nu} \Phi \right)^{\dagger} \mathbf{D}^{\nu} \Phi \right] \\ \mathcal{O}_{S,0} &= \frac{f_{S,0}}{\Lambda^4} \left[\left(\mathbf{D}_{\mu} \Phi \right)^{\dagger} \mathbf{D}_{\nu} \Phi \right] \left[\left(\mathbf{D}^{\nu} \Phi \right)^{\dagger} \mathbf{D}^{\mu} \Phi \right] \end{split}$$

Conversions

$$F_{S,0} = 16 \frac{\alpha_4}{v^4} = \frac{f_{S,0} + f_{S,2}}{\Lambda^4}, \text{ with } f_{S,0} = f_{S,2}$$
$$F_{S,1} = 16 \frac{\alpha_5}{v^4} = \frac{f_{S,1}}{\Lambda^4}$$

Keep in mind: S_0 (S_2) and S_1 contribute also to anomalous VVHH and HHHH couplings!