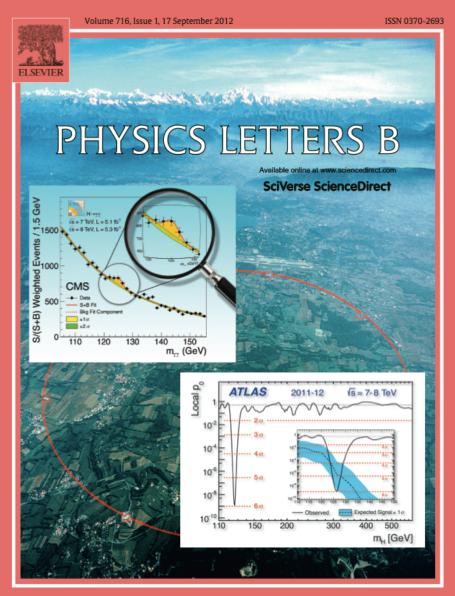
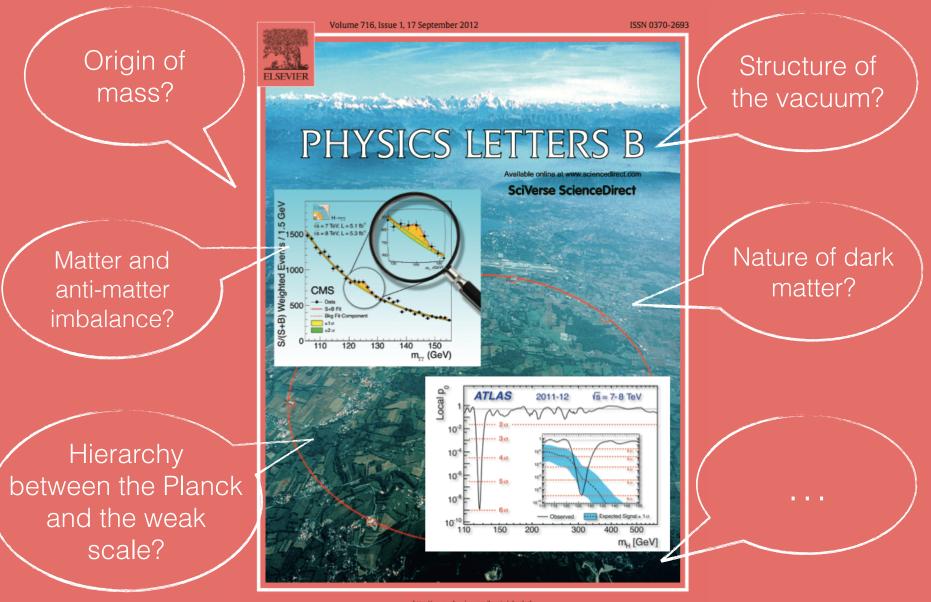


Status and Perspectives of LHC physics

Krisztian Peters DESY


Matter and Universe Programmtage 12 December 2016, Mainz



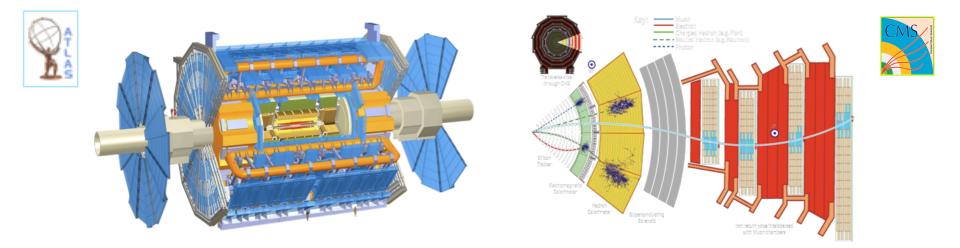
http://www.elsevier.com/locate/physletb

http://www.elsevier.com/locate/physletb

Large Hadron Collider

SUISS

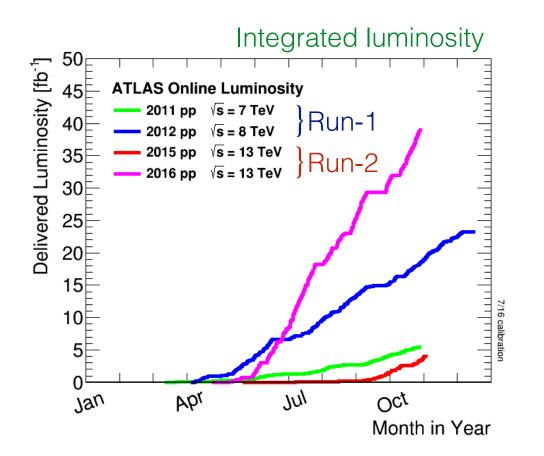
ATLAS


ALICE

Centre-of-mass energy 13 TeV

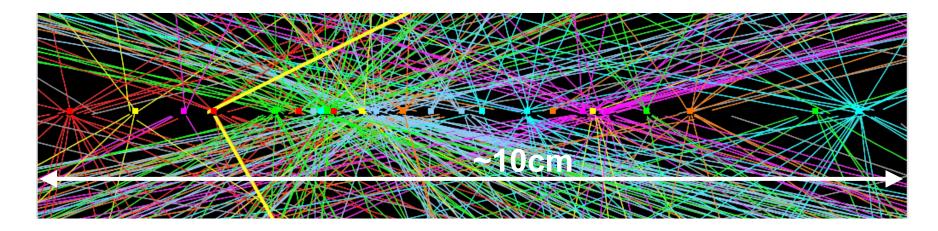
CERN Prévessin

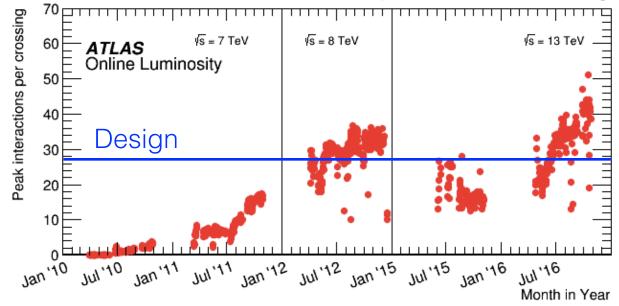
Centre-of-mass energy 7/8 TeV (2010 - 2013)


ATLAS and CMS experiments

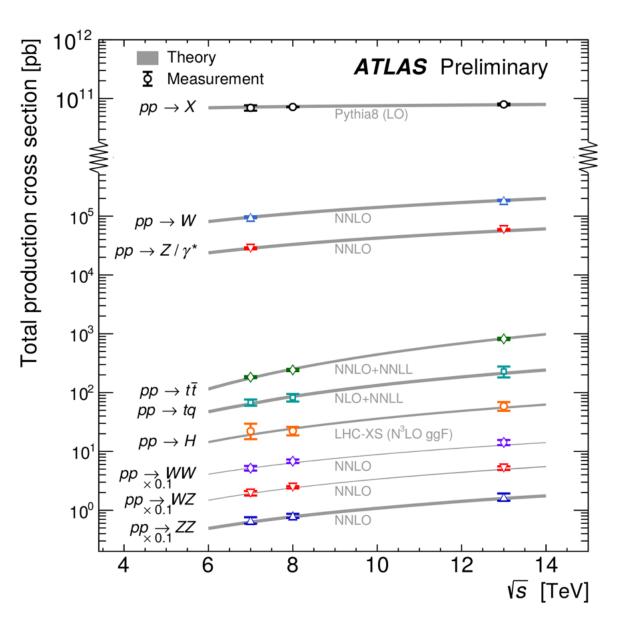
ATLAS: emphasis on excellent jet and missing E_T resolution, particle identification, and standalone muon measurement *CMS:* emphasis on excellent electron/photon and tracking (muon) resolution

Detectors well understood, stable operation and data taking efficiencies above 90%

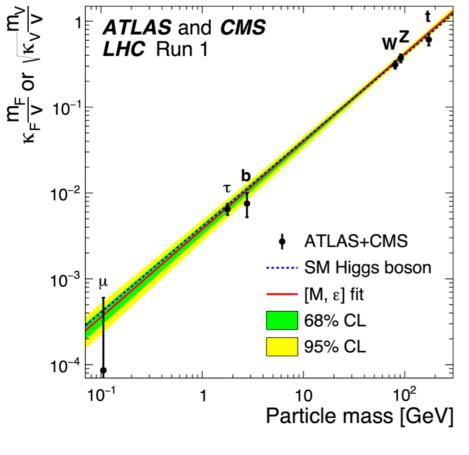

Data samples


Record breaking LHC performance in 2016

- 30% higher machine availability
- Instantaneous luminosity exceeds design value


Experimental challenges

Peak interactions per bunch crossing



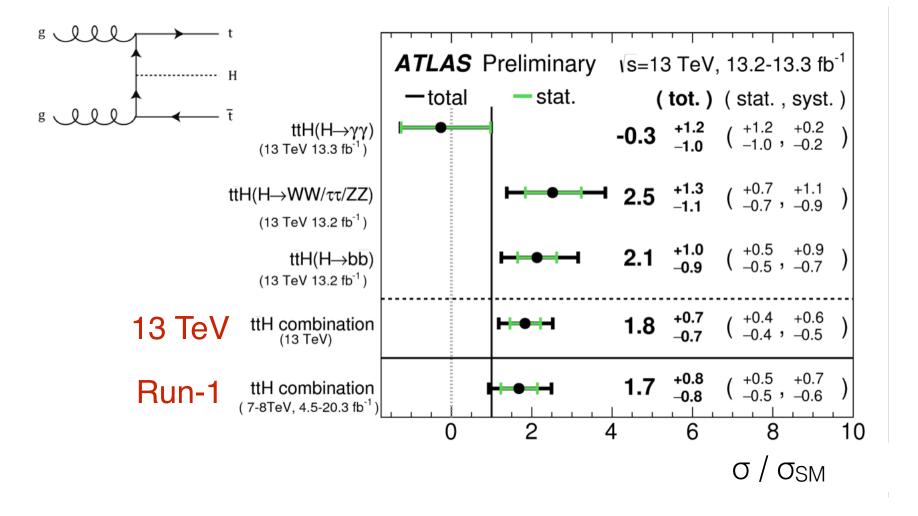
Precision measurements

The Higgs boson

Breathtaking progress in O(2) years

Higgs boson mass measured with 0.2% precision

W/Z couplings measured with 10 to 20% precision

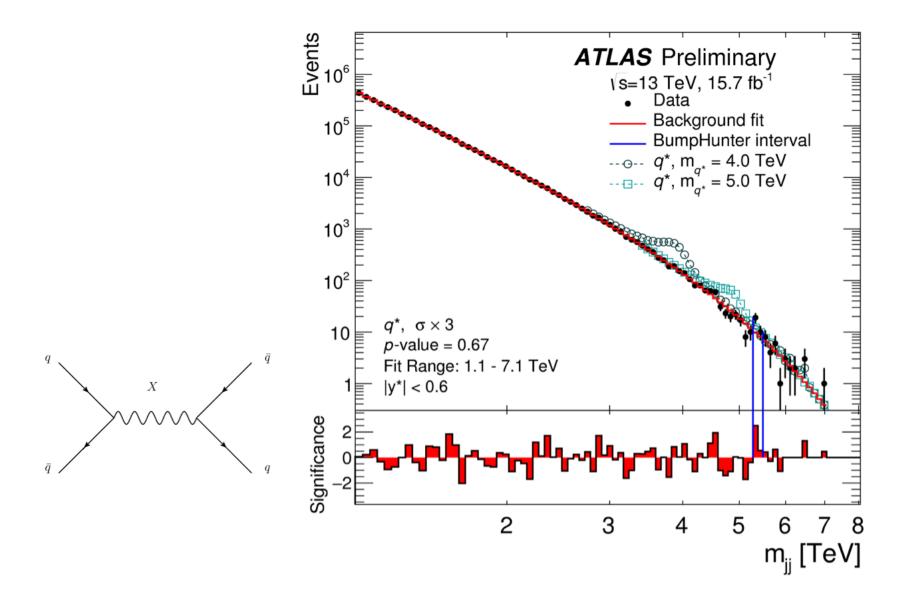

A plot for textbooks!

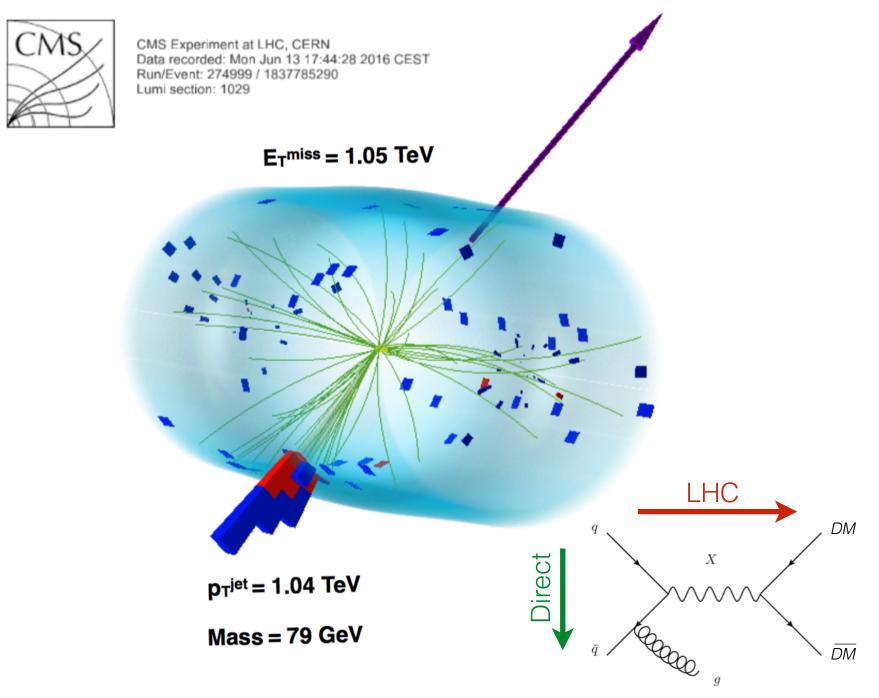
The Higgs boson

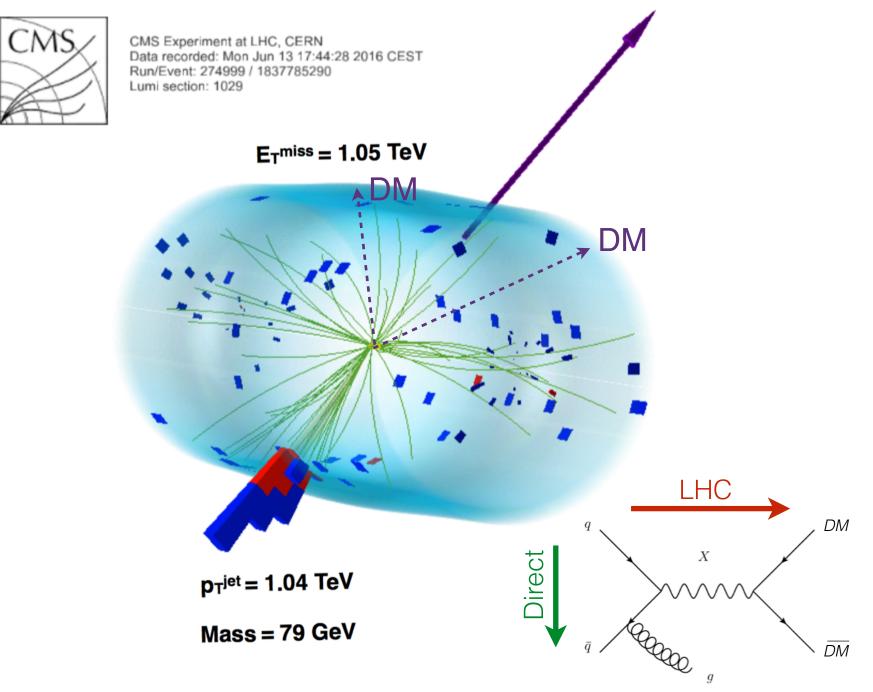
Breathtaking progress in O(2) years

Top-Yukawa coupling

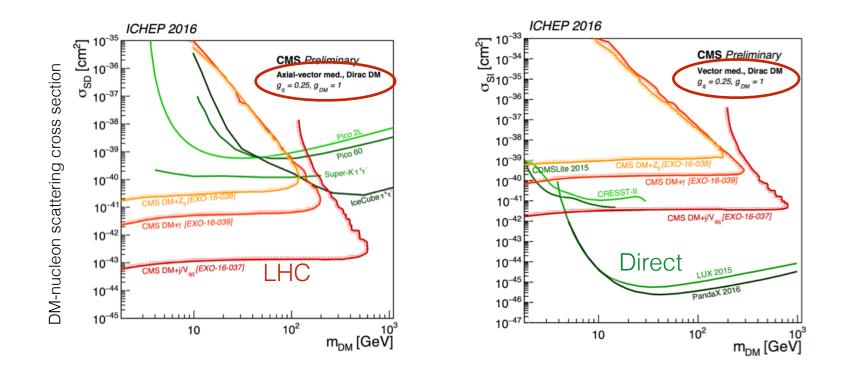
Uncertainties still large, no clear picture yet

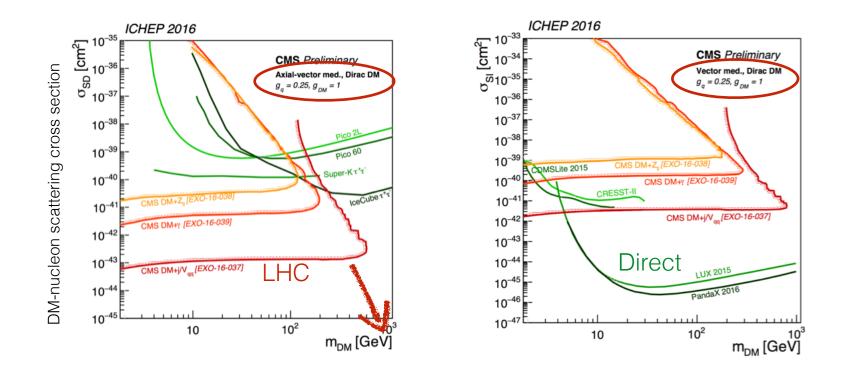



Run: 280673 Event: 1273922482 2015-09-29 15:32:53 CEST


Di-Jet Event

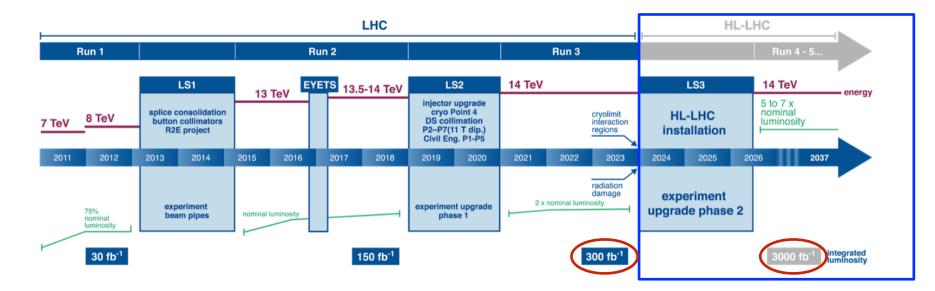
Highest Mass Central Dijet $pT_1 = pT_2 = 3.2 \text{ TeV}$ $m_{JJ} = 6.9 \text{ TeV}$ MET = 46 GeV


Search for new resonances



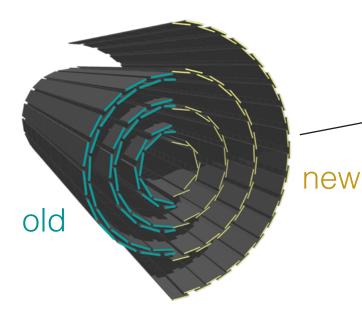
Dark matter at the LHC

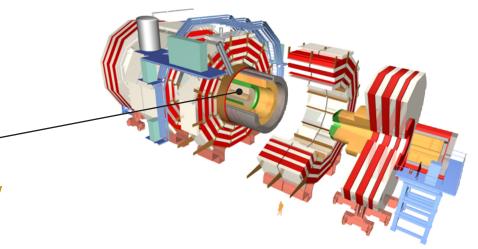
Complementary sensitivity to direct dark matter detection experiments


Dark matter at the LHC

Complementary sensitivity to direct dark matter detection experiments

Towards the High Luminosity LHC

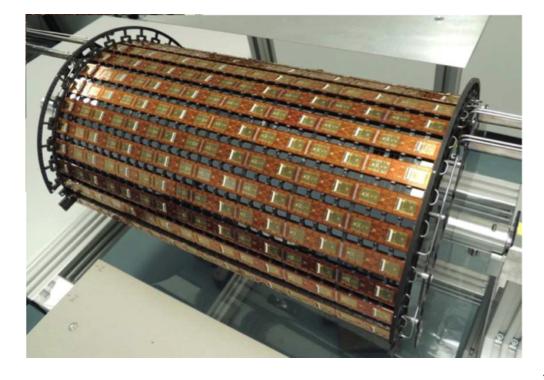

Upgrade LHC and detectors to accumulate a data sample of 3 ab⁻¹ over a 10 year run period



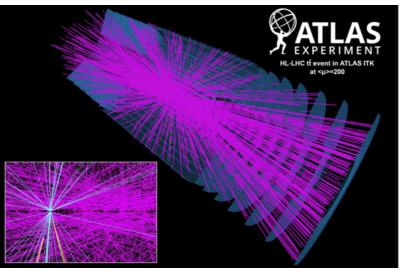
Go to design energy, nominal luminosity $L = 10^{34} \text{ cm}^{-2}\text{s}^{-2}$

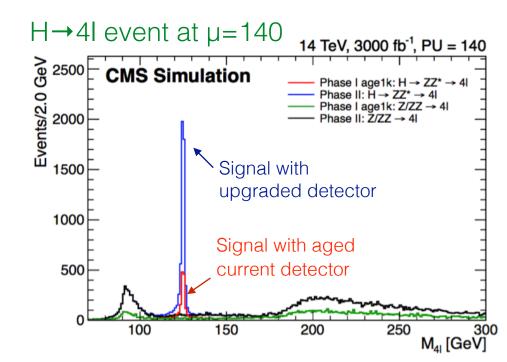
Phase-1 upgrade to design luminosity $L = 2*10^{34} \text{ cm}^{-2}\text{s}^{-2}$ $\mu = 55$ Phase-2 upgrade L = 5 (7.5) *10³⁵ cm⁻²s⁻² μ = 140 (200)

CMS Phase-1 upgrade



Outer layer of new pixel detector built by German institutes


- 512+ modules out of 12k


Installation beginning of 2017

The need for new detectors

- ATLAS and CMS designed for $\mu = 23$. Major upgrades mandatory for the HL-LHC
 - Cope with the huge pileup interactions and radiation damage
 - Maintain similar levels of performance as of today

HL-LHC tt event at μ =200

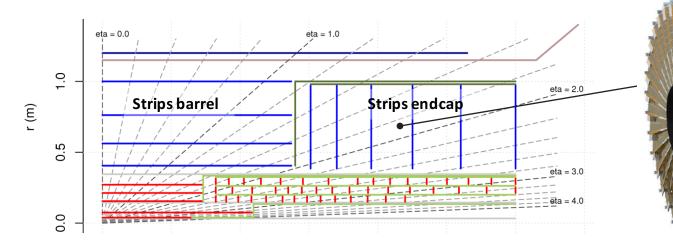
ATLAS and CMS upgrades

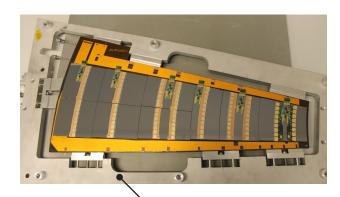
New tracker

Fully silicon based Higher granularity, better radiation tolerance

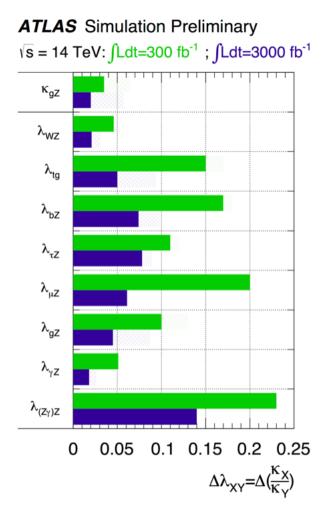
New trigger and dataacquisition system

Enable trigger rates up to an order of magnitude larger than the current systems Requires replacing almost all of the current readout electronics


Upgrades to muon system and calorimetry in the forward region


ATLAS and CMS tracker upgrade

Both experiments: one Silicium Strip Detector End-Cap built by German institutes and assembled at DESY


Much improved performance:

- Radiation hard sensor material and electronics
- Increase granularity
- Improve performance (light material)
- Extend to high rapidities

The origin of mass

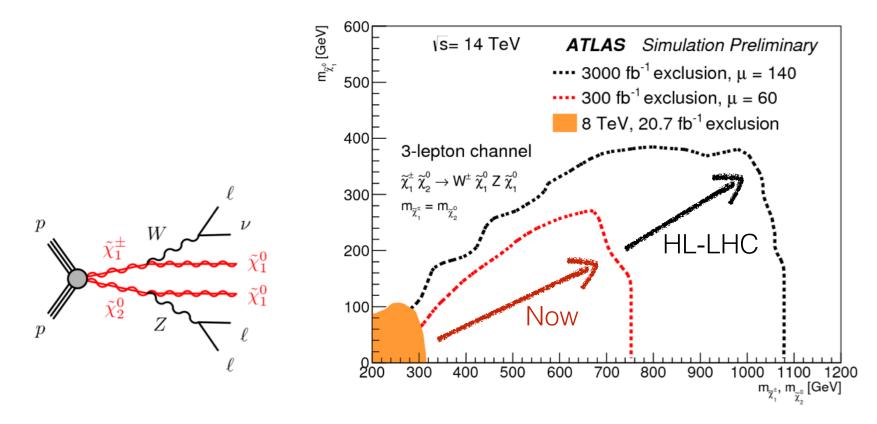
Higgs Snowmass report (arXiv:1310.8361) Deviation from SM due to particles with M=1 TeV

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$ $\sim 10\%$		$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

HL-LHC a Higgs boson factory

- Couplings measured with 2-8% precision
- Access to rare decays

The origin of mass


Higgs Snowmass report (arXiv:1310.8361) Deviation from SM due to particles with M=1 TeV

Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

HL-LHC a Higgs boson factory

- Couplings measured with 2-8% precision
- Access to rare decays

Supersymmetry

Run-2/3 at LHC will ~double mass reach compared to Run-1

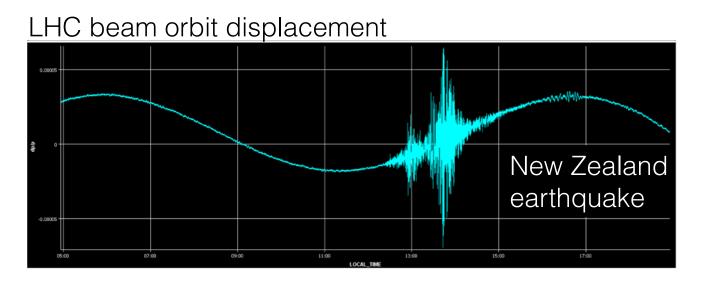
Significant further increase with 3000 fb-1

- ~50 to 100% for electroweak production of neutralinos and charginos
- ~20% for gluino, squark, stop

Conclusions

The LHC Run-1 has been a tremendous success

An exceptionally well performing LHC delivered the first large 13 TeV dataset. Exploration of huge uncharted territory

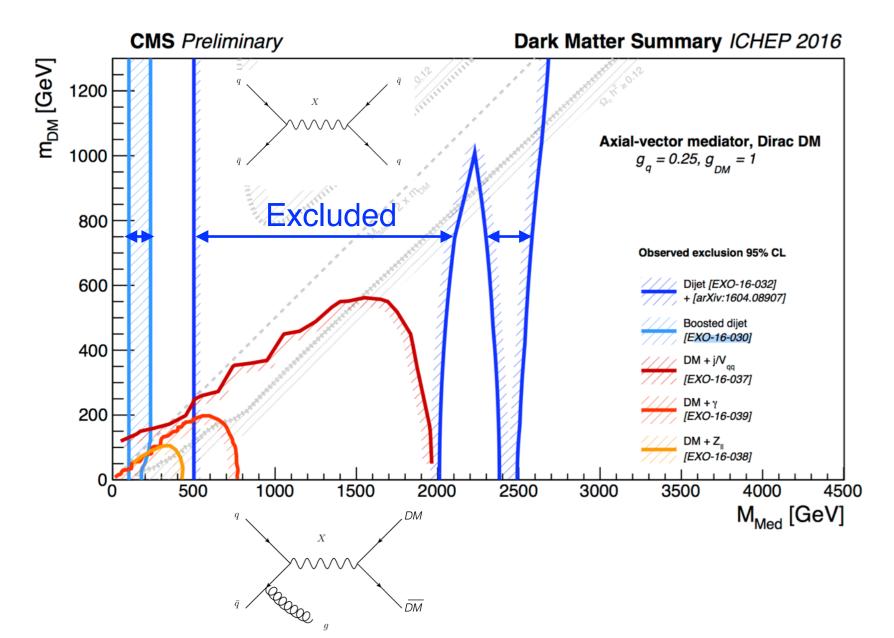

Experiments are entering the area of precision measurements and rare phenomena searches

The LHC will provide exciting science for the next two decades

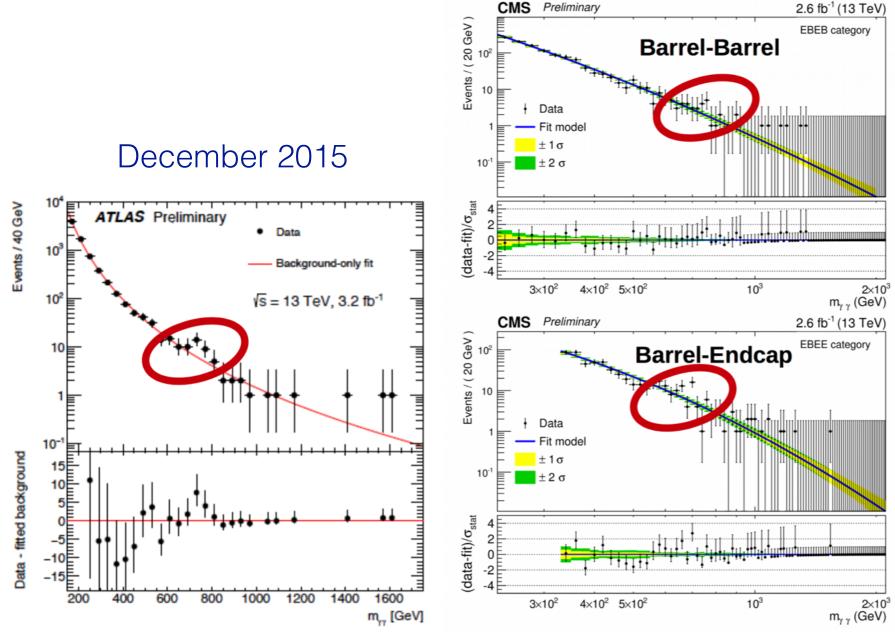
Conclusions

The LHC Run-1 has been a tremendous success

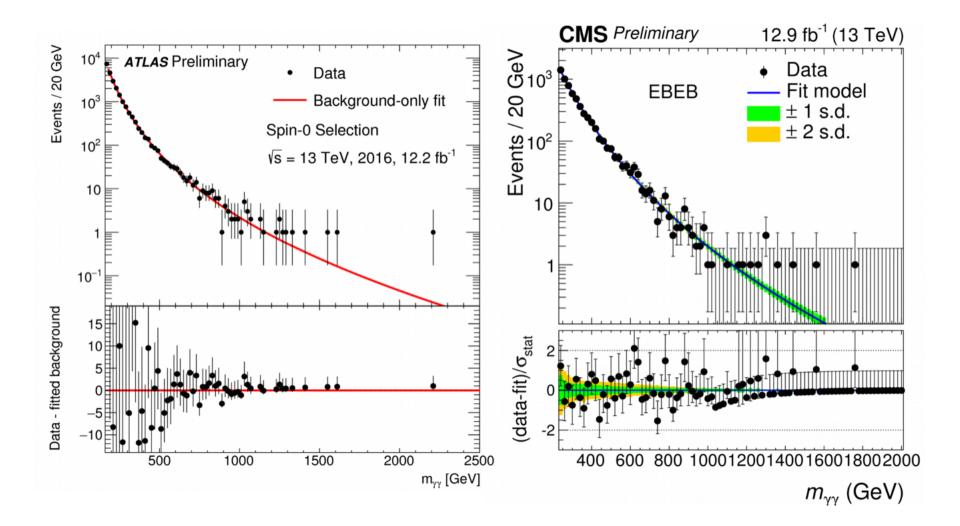
An exceptionally well performing LHC delivered the first large 13 TeV dataset. Exploration of huge uncharted territory

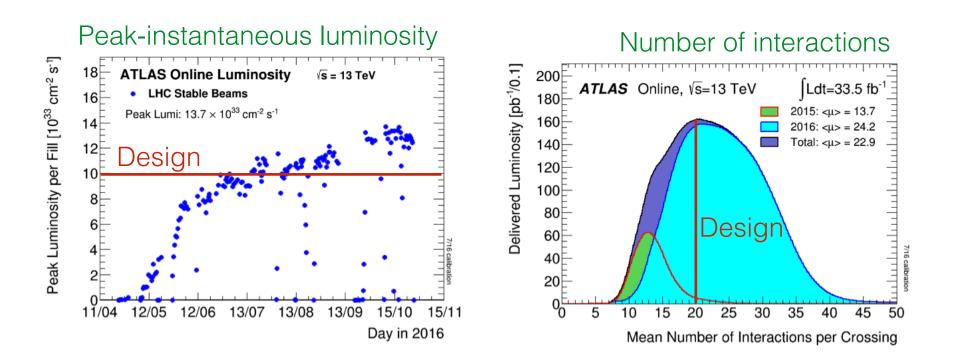


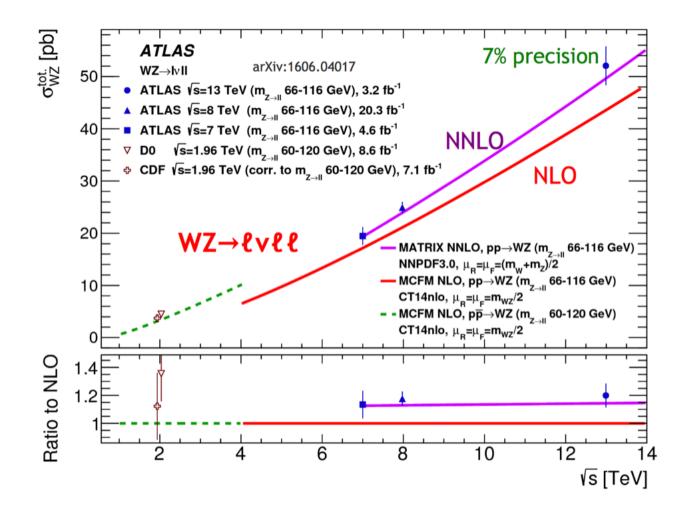
Experiments are entering the area of precision measurements and rare phenomena searches


The LHC will provide exciting science for the next two decades

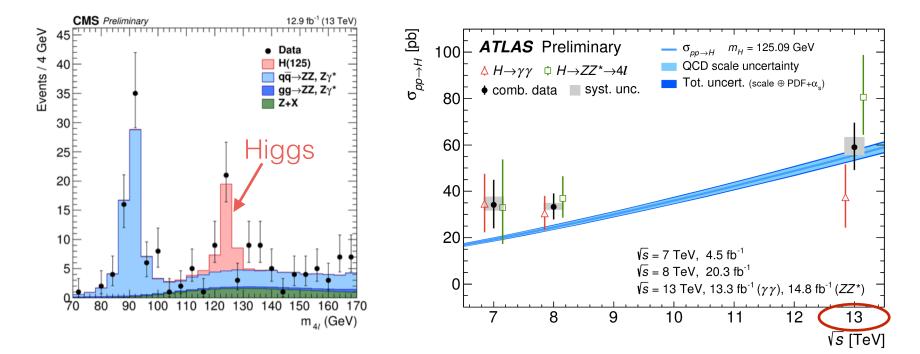
Additional material


Dark matter at the LHC


Di-photon search


Di-photon search

Challenges with high-luminosity


Precision measurements

Run-1 puzzle to describe inclusive diboson cross-sections

• Measurements tended to lie above NLO calculations NNLO calculations $\rightarrow \sim 20\%$ corrections and better agreement

The Higgs boson ... still there in Run-2

Overall significance at 13 TeV $\sim 10\sigma$

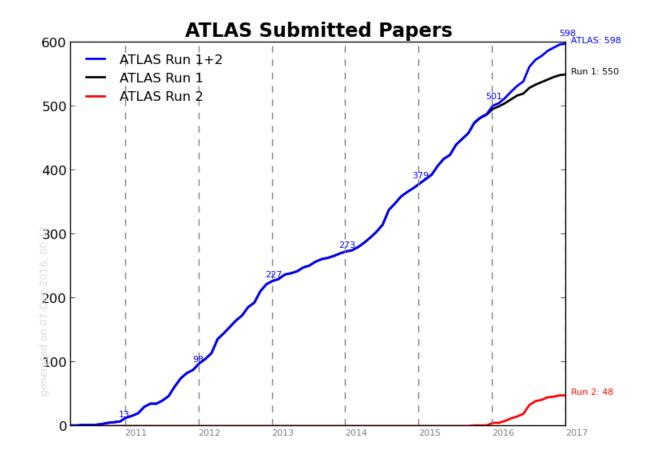
Rate consistent with SM prediction

Increasing dataset allows for differential cross section measurements and tests of top and bottom-Yukawa couplings

Searches

ATLAS Exotics Searches* - 95% CL Exclusion

Status: August 2016


ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 20.3) \text{ fb}^{-1}$

 $\sqrt{s} = 8, 13 \text{ TeV}$

Madal		lata ÷	⊏miss	66.440		20.0/10	V3 = 0, 10 10 V
Model	ί, γ	Jets	E _T	JL at[fb			Reference
$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD QBH} \to \ell q \\ \text{ADD QBH} \\ \text{ADD BH high } \sum_{\mathcal{P}T} \\ \text{ADD BH multijet} \\ \text{RS1 } G_{KK} \to \ell\ell \\ \text{RS1 } G_{KK} \to \ell\ell \\ \text{RS1 } G_{KK} \to \gamma\gamma \\ \text{Bulk RS } G_{KK} \to WW \to qq\ell\nu \\ \text{Bulk RS } G_{KK} \to HH \to bbbb \\ \text{Bulk RS } G_{KK} \to tt \\ \text{2UED } / \text{RPP} \end{array}$	$\begin{array}{c} - \\ 2 e, \mu \\ 1 e, \mu \\ - \\ \ge 1 e, \mu \\ 2 e, \mu \\ 2 \gamma \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 1 e, \mu \end{array}$			3.2 20.3 20.3 15.7 3.2 3.6 20.3 3.2 13.2 13.3 20.3 3.2	MD 6.58 TeV Ms 4.7 TeV Mth 5.2 TeV Mth 5.2 TeV Mth 8.7 TeV Mth 8.2 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 2.68 TeV GKK mass 3.2 TeV GKK mass 3.2 TeV GKK mass 2.2 TeV KK mass 1.46 TeV	$\begin{array}{l} n=2\\ n=3 \; \text{HLZ}\\ n=6\\ n=6, \\ M_D=3 \; \text{TeV, rot BH}\\ n=6, \; M_D=3 \; \text{TeV, rot BH}\\ k/\overline{M}_{PI}=0.1\\ k/\overline{M}_{PI}=0.1\\ k/\overline{M}_{PI}=1.0\\ BR=0.925\\ \text{Tier (1,1), BR}(A^{(1.1)}\rightarrow tt)=1 \end{array}$	1604.07773 1407.2410 1311.2006 ATLAS-CONF-2016-069 1606.02265 1512.02586 1405.4123 1606.03833 ATLAS-CONF-2016-062 ATLAS-CONF-2016-049 1505.07018 ATLAS-CONF-2016-013
	В –	2 b, 0-1 j	- Yes Yes - Yes -	13.3 19.5 3.2 13.3 13.2 15.5 3.2 20.3 20.3	Z' mass 4.05 TeV Z' mass 2.02 TeV Z' mass 1.5 TeV W' mass 4.74 TeV W' mass 2.4 TeV W' mass 3.0 TeV V' mass 2.31 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$egin{array}{lll} g_V &= 1 \ g_V &= 3 \ g_V &= 3 \end{array}$	ATLAS-CONF-2016-045 1502.07177 1603.08791 ATLAS-CONF-2016-061 ATLAS-CONF-2016-052 ATLAS-CONF-2016-055 1607.05521 1410.4103 1408.0886
Cl qqqq Cl ℓℓqq Cl uutt	2 e, µ 2(SS)/≥3 e,	2 j ,µ ≥1 b, ≥1 j	– – Yes	15.7 3.2 20.3	Λ Λ Λ 4.9 TeV	19.9 TeV $\eta_{LL} = -1$ 25.2 TeV $\eta_{LL} = -1$ $ C_{RR} = 1$ $ C_{RR} = 1$	ATLAS-CONF-2016-069 1607.03669 1504.04605
		≥1j / 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	ma 1.0 TeV ma 710 GeV M. 550 GeV	$\begin{array}{l} g_q\!=\!0.25,g_{\chi}\!=\!1.0,m(\chi)<250~{\rm GeV} \\ g_q\!=\!0.25,g_{\chi}\!=\!1.0,m(\chi)<150~{\rm GeV} \\ m(\chi)<150~{\rm GeV} \end{array}$	1604.07773 1604.01306 ATLAS-CONF-2015-080
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$ \begin{split} \beta &= 1 \\ \beta &= 1 \\ \beta &= 0 \end{split} $	1605.06035 1605.06035 1508.04735
$ \begin{array}{l} VLQ\;TT \rightarrow Ht + X \\ VLQ\;YY \rightarrow Wb + X \\ VLQ\;BB \rightarrow Hb + X \\ VLQ\;BB \rightarrow Zb + X \\ VLQ\;QQ \rightarrow WqWq \\ VLQ\;T_{5/3}\;T_{5/3} \rightarrow WtWt \end{array} $	1 e, µ	$ \begin{array}{l} \geq 1 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/ \geq 1 \ b \\ \geq 4 \ j \end{array} $	j Yes j Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 3.2	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV Q mass 690 GeV T _{5/3} mass 990 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 ATLAS-CONF-2016-032
Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	1γ 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1j 2j 1b,1j 1b,2-0j – –	- - Yes -	3.2 15.7 8.8 20.3 20.3 20.3	q' mass 4.4 TeV q' mass 5.6 TeV b' mass 2.3 TeV b' mass 1.5 TeV '' mass 3.0 TeV '' mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g^* = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 ATLAS-CONF-2016-069 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow ee$ Higgs triplet $H^{\pm\pm} \rightarrow \ell_T$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e,μ 2 e (SS) 3 e,μ,τ 1 e,μ - -	2j - 1b -	Yes - - Yes - 3 TeV	20.3 20.3 13.9 20.3 20.3 20.3 7.0	ar mass 960 GeV N ^o mass 2.0 TeV H ^{##} mass 570 GeV H ^{##} mass 400 GeV multi-charged particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1 1	$\begin{split} m(W_R) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production, } BR(H_L^{zz} \to ee)=1 \\ \text{DY production, } BR(H_L^{zz} \to tr)=1 \\ a_{\text{non-res}} &= 0.2 \\ \text{DY production, } q &= 5e \\ \text{DY production, } g &= 1g_D, \text{ spin } 1/2 \\ 0 \\ \textbf{Mass scale [TeV]} \end{split}$	1407.8150 1506.06020 ATLAS-CONF-2016-051 1411.2921 1410.5404 1504.04188 1509.08059
	ADD non-resonant $\ell\ell$ ADD QBH $\rightarrow \ell q$ ADD QBH $\rightarrow \ell q$ ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $G_{KK} \rightarrow HH \rightarrow bbbb$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP SSM $Z' \rightarrow \ell \ell$ SSM $Z' \rightarrow \ell \ell$ SSM $W' \rightarrow \ell \nu$ HVT $W' \rightarrow WZ \rightarrow qqq\nu$ model HVT $W' \rightarrow WZ \rightarrow qqqq$ model HVT $V' \rightarrow WH 2 \rightarrow qqqq$ model UT $V' \rightarrow WH 2 \rightarrow qqqq$ model UT $V' \rightarrow WH 2 \rightarrow qqqq$ model Scalar LQ 14 gen Scalar LQ 37 gen VLQ $TT \rightarrow Ht + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $QQ \rightarrow WqWq$ VLQ $T_{5/3}T_{5/3} \rightarrow WtWt$ Excited quark $\delta^* \rightarrow qq$ Excited quark $\delta^* \rightarrow Wt$ Excited quark $\delta^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ℓ^* LSTC $a_T \rightarrow W\gamma$ LSTC $a_T \rightarrow W\gamma$ LSTC $a_T \rightarrow W\gamma$ Higgs triplet $H^{\pm \pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$\begin{array}{c c} \text{ADD } G_{KK} + g/q & -\\ \text{ADD } \text{non-resonant } \ell & 2 e, \mu \\ \text{ADD } \text{ADD } \text{ABH} \rightarrow \ell q & 1 e, \mu \\ \text{ADD } \text{QBH} \rightarrow \ell q & 1 e, \mu \\ \text{ADD } \text{QBH} \rightarrow \ell q & 1 e, \mu \\ \text{ADD } \text{ADD } \text{BH } \text{high } \sum_{PT} & \geq 1 e, \mu \\ \text{ADD } \text{BH } \text{high } \sum_{PT} & \geq 1 e, \mu \\ \text{ADD } \text{ADD } \text{BH } \text{high } \sum_{PT} & \geq 2 q \\ \text{Bulk } \text{RS } G_{KK} \rightarrow WW \rightarrow qq\ell \nu & 1 e, \mu \\ \text{Bulk } \text{RS } G_{KK} \rightarrow WW \rightarrow qq\ell \nu & 1 e, \mu \\ \text{Bulk } \text{RS } G_{KK} \rightarrow WW \rightarrow qq\ell \nu & 1 e, \mu \\ \text{Bulk } \text{RS } G_{KK} \rightarrow HH \rightarrow bbbb & - \\ \text{Bulk } \text{RS } G_{KK} \rightarrow HH \rightarrow bbbb & - \\ \text{Bulk } \text{RS } G_{KK} \rightarrow tt & 1 e, \mu \\ \text{2UED} / \text{RPP} & 1 e, \mu \\ \text{2UED} / \text{RPP} & 1 e, \mu \\ \text{SSM } Z' \rightarrow \ell \ell & 2 e, \mu \\ \text{SSM } Z' \rightarrow \ell \ell & 2 e, \mu \\ \text{SSM } W' \rightarrow \ell \nu & 1 e q q q \text{qrodel } \text{A } 0 e, \mu \\ \text{HVT } W' \rightarrow WZ \rightarrow q q q q \text{qrodel } \text{B } & - \\ \text{HVT } W' \rightarrow WZ \rightarrow q q q q \text{qrodel } \text{B } & - \\ \text{HVT } W' \rightarrow WZ \rightarrow q q q q \text{qrodel } \text{B } & - \\ \text{HVT } W' \rightarrow WZ \rightarrow q q q \text{qrodel } \text{B } & 1 e, \mu \\ \text{HSM } W_R' \rightarrow tb & 0 e, \mu \\ \text{IRSM } W_R' \rightarrow tb & 0 e, \mu \\ \text{Cl } q q q & -e \\ \text{Cl } \ell q q q & -e \\ \text{Cl } \ell q q q \text{qrodel } \text{D } & - \\ \text{Cl } \ell q q q \text{qrodel } \text{D } & 0 e, \mu, 1 \\ \chi Z \chi \chi \text{ EFT (Dirac DM) } & 0 e, \mu, 1 \\ \chi Z \chi \chi \text{ EFT (Dirac DM) } & 0 e, \mu \\ \text{Scalar LQ } 2^{\text{rd}} \text{ gen } & 2 e \\ \text{Scalar LQ } 2^{\text{rd}} \text{ gen } & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } Q Q \rightarrow W q W q & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\ \text{VLQ } BB \rightarrow Hb + X & 1 e, \mu \\$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Model l, γ Jets'r E_{m}^{miss} f_{c} du (hc^{-1}) Limit ADD cost + g/q -21 Ye 3.3 Mo 4.37 W/V ADD Cost + g/q $1 = \mu$ $1 = -23$ Mo 4.37 W/V ADD Cost + g/q $1 = \mu$ $1 = -23$ Mo 4.37 W/V ADD BH + f_q $1 = \mu$ $1 = -23$ Mo 5.37 W/V ADD BH + f_q $2 = \mu$ -33 Mo 5.37 W/V ADD BH + f_q $2 = \mu$ -32 Mo 5.37 W/V ADD BH + f_q $2 = \mu$ -32 Mo 5.37 W/V BM BS Segret - WW - qqV $1 = \mu$ $1 = \mu$ $1 = \mu$ $1 = \mu$ $2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

LHC publications

→ 1 publication per working day!