

The generic approach to Higgs mass calculations

Florian Staub | MU Programmtag 2016, 12th December 2016

KARLSRUHE INSTITUTE OF TECHNOLOGY, ITP & IKP

Physics beyond the SM

Minimal supersymmetry (MSSM) is the best studied extension

- Solves the hierarchy problem
- Predicts gauge coupling unification
- Provides a dark matter candidate
- Relates EWSB and large top mass

Physics beyond the SM

Minimal supersymmetry (MSSM) is the best studied extension

- Solves the hierarchy problem
- Predicts gauge coupling unification
- Provides a dark matter candidate
- Relates EWSB and large top mass

• . . .

Precision calculations

Many calculations to get precise predictions for the Higgs mass, flavour observables, ... were mainly done in the context of the MSSM.

Physics beyond the SM

Minimal supersymmetry (MSSM) is the best studied extension

- Solves the hierarchy problem
- Predicts gauge coupling unification
- Provides a dark matter candidate
- Relates EWSB and large top mass

• . . .

Precision calculations

Many calculations to get precise predictions for the Higgs mass, flavour observables, ... were mainly done in the context of the MSSM.

Public tools to study SUSY

The tools used so far (SoftSusy, Suspect, Isajet, Superiso, Susy_Flavor, FeynHiggs, NMSSMTools,...) can handle only very few models.

Beyond the SM

The natural MSSM gets currently disfavoured by

- null results at LHC
- 2 rather heavy Higgs mass

The natural MSSM gets currently disfavoured by

- null results at LHC
- 2 rather heavy Higgs mass

Possible solution:

The SUSY scale is much higher than expected

→ see talk by Emanuele

The natural MSSM gets currently disfavoured by

- null results at LHC
- 2 rather heavy Higgs mass

Possible solution:

The SUSY scale is much higher than expected

→ see talk by Emanuele

② Nature has chosen another (SUSY) model

The natural MSSM gets currently disfavoured by

- null results at LHC
- 2 rather heavy Higgs mass

Possible solution:

The SUSY scale is much higher than expected

→ see talk by Emanuele

② Nature has chosen another (SUSY) model

Golden era of model building?

Many more BSM models are studied than before the LHC was turned on

Extended Higgs/Gauge sector

For instance in singlet/triplet extensions, gauge extensions, or *R*-symmetric models.

- F/D-term enhanced tree-level mass
- Mixing with lighter scalars

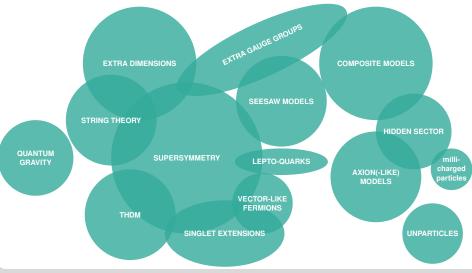
Ideas to increase the Higgs mass

Extended Higgs/Gauge sector

For instance in singlet/triplet extensions, gauge extensions, or *R*-symmetric models.

- F/D-term enhanced tree-level mass
- Mixing with lighter scalars

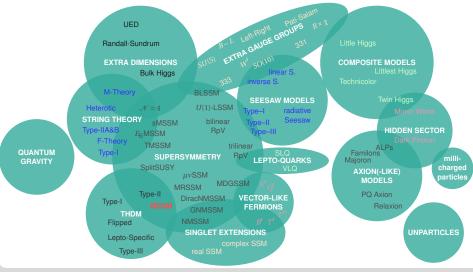
Extended Matter sector


For instance in vector-like extensions

New loop corrections to Higgs mass

Many ideas exist to go beyond the SM

(without any claim to completeness)



Beyond the SM

Many ideas exist to go beyond the SM

(without any claim to completeness)

Beyond the SM

Many BSM models become more and more popular,...

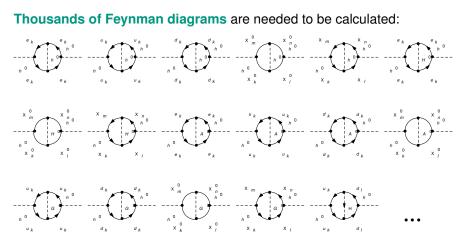
Beyond the SM

Many BSM models become more and more popular,...

..., but precision calculations for them rarely exist:

\rightarrow uncertainty in Higgs mass prediction usually much bigger than in $\ensuremath{\mathsf{MSSM}}$

Many BSM models become more and more popular,...


..., but precision calculations for them rarely exist:

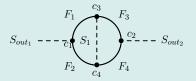
\rightarrow uncertainty in Higgs mass prediction usually much bigger than in MSSM

 \rightarrow A new approach was needed to confront many BSM models with the Higgs (mass) measurements

Generic Higgs mass calculations

→ can be reduced to a small number of generic diagrams

Generic approach


Generic Higgs mass calculations

Thousands of Feynman diagrams are needed to be calculated:

 \rightarrow can be reduced to a small number of generic diagrams

Generic expressions

Generic expression $f(m_{out_i}, m_S, m_{F_i}, c_i)$ are

Valid for any model and for any real scalar

→ Disentangle the calculation of ...

... loop amplitudes (difficult) and masses & couplings (easy)

Fully automatised two-loop calculations

The combination SARAH/SPheno provides a fully automatised two-loop calculation of the Higgs mass in SUSY models.

Approach

[Goodsell,Nickel,FS,1411.0675,1503.03098]

- Generic one- and two-loop calculations which are matched on concrete models.
- Auto-generated Fortran code for numerical evaluation

Generic approach

Fully automatised two-loop calculations

The combination SARAH/SPheno provides a fully automatised two-loop calculation of the Higgs mass in SUSY models.

Approach

[Goodsell,Nickel,FS,1411.0675,1503.03098]

- Generic one- and two-loop calculations which are matched on concrete models.
- Auto-generated Fortran code for numerical evaluation

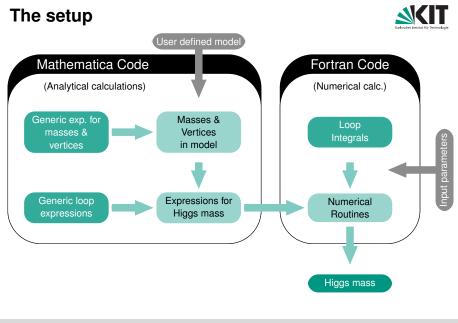
Approximations @2-loop: gaugeless limit ($g_1 = g_2 = 0$), $p^2 = 0$:

similar precision as most public tools provide for MSSM

Fully automatised two-loop calculations

The combination SARAH/SPheno provides a fully automatised two-loop calculation of the Higgs mass in SUSY models.

Approach


[Goodsell,Nickel,FS,1411.0675,1503.03098]

- Generic one- and two-loop calculations which are matched on concrete models.
- Auto-generated Fortran code for numerical evaluation

Approximations @2-loop: gaugeless limit ($g_1 = g_2 = 0$), $p^2 = 0$:

- similar precision as most public tools provide for MSSM
- All available (DR) two-loop results (MSSM, NMSSM) are exactly reproduced!
- CP violation possible

[Goodsell,FS,1604.05335]

Generic approach

New results for the Higgs mass

The

setup was used to calculate many new two-loop results:	
Contributions from trilinear RpV	[Dreiner,Nickel,FS,1411.3731]
Missing corrections in the NMSSM	[Goodsell,Nickel,FS,1411.4665]
CP violating NMSSM beyond $O(\alpha_s \alpha_t)$	[Goodsell,FS, 1604.05335]
Contributions from non-holomorphic soft-terms	
	[Ün, Tanyildizi,Kerman Solmaz,1412.1440]
MRSSM	[Diessner,Kalinoswki,Kotlarski,Stöckinger,1504.05386]
Contributions from vectorlike (s)tops	[Nickel,FS,1505.06077]
Other vector-like states	[Basirnia, Macaluso, Shih, 1605.08442]
The MSSM beyond MFV	[Goodsell,Nickel,FS,1511.01904]

The soft-breaking Lagrangian provides in general many new couplings

$$\mathscr{L}_{SB} = \dots + T_u^{ij} \tilde{u}_i^* \tilde{q}_j H_u + T_d^{ij} \tilde{d}_i^* \tilde{q}_j H_d + T_e^{ij} \tilde{e}_i^* \tilde{l}_j H_d + \text{h.c.}$$

The Higgs mass in non-minimal SUSY models

The soft-breaking Lagrangian provides in general many new couplings

$$\mathscr{L}_{SB} = \dots + T_u^{ij} \tilde{u}_i^* \tilde{q}_j H_u + T_d^{ij} \tilde{d}_i^* \tilde{q}_j H_d + T_e^{ij} \tilde{e}_i^* \tilde{l}_j H_d + \text{h.c.}$$

- T_u^{32} and T_u^{23} hardly constrained by flavour observables
- → can be huge

The soft-breaking Lagrangian provides in general many new couplings

$$\mathscr{L}_{SB} = \dots + T_u^{ij} \tilde{u}_i^* \tilde{q}_j H_u + T_d^{ij} \tilde{d}_i^* \tilde{q}_j H_d + T_e^{ij} \tilde{e}_i^* \tilde{l}_j H_d + \text{h.c.}$$

- T_u^{32} and T_u^{23} hardly constrained by flavour observables
- → can be huge
- → known impact on the Higgs mass at one-loop: up to 60 GeV!

[Arana-Catania, Heinemeyer, Penaranda, 1109.6232]

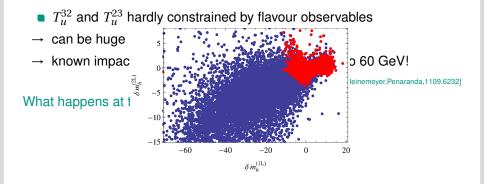
The Higgs mass in non-minimal SUSY models

The soft-breaking Lagrangian provides in general many new couplings

$$\mathscr{L}_{SB} = \dots + T_u^{ij} \tilde{u}_i^* \tilde{q}_j H_u + T_d^{ij} \tilde{d}_i^* \tilde{q}_j H_d + T_e^{ij} \tilde{e}_i^* \tilde{l}_j H_d + \text{h.c.}$$

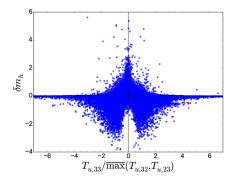
- T_u^{32} and T_u^{23} hardly constrained by flavour observables
- \rightarrow can be huge
- → known impact on the Higgs mass at one-loop: up to 60 GeV!

[Arana-Catania, Heinemeyer, Penaranda, 1109.6232]


What happens at two-loop?

The Higgs mass in non-minimal SUSY models

The soft-breaking Lagrangian provides in general many new couplings

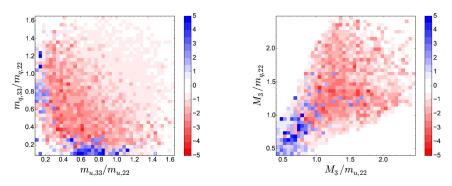

$$\mathscr{L}_{SB} = \dots + T_u^{ij} \tilde{u}_i^* \tilde{q}_j H_u + T_d^{ij} \tilde{d}_i^* \tilde{q}_j H_d + T_e^{ij} \tilde{e}_i^* \tilde{l}_j H_d + \text{h.c.}$$

When are the two-loop effects large?

[Goodsell,Nickel,FS,1511.01904]

Important effects of several GeV in case of ...

... specific ratios of T-terms

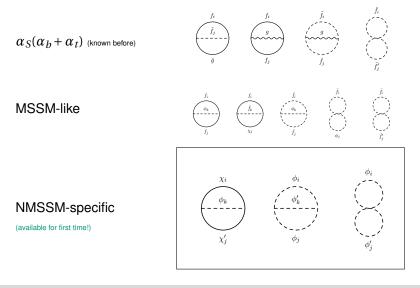

Bounds from Vacuum stability and flavour constraints inlcuded

The Higgs mass in non-minimal SUSY models

When are the two-loop effects large?

[Goodsell,Nickel,FS,1511.01904]

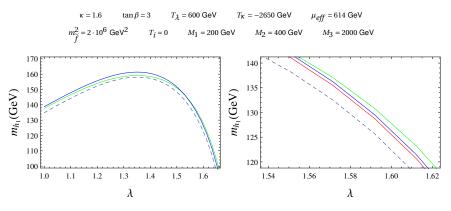
Important effects of several GeV in case of ...


- ... specific ratios of T-terms
- ... hierarchy between soft masses

Bounds from Vacuum stability and flavour constraints inlcuded

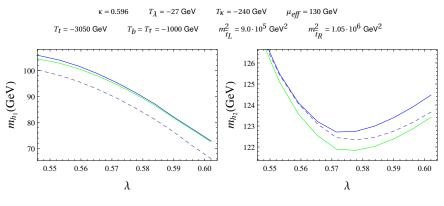
The Higgs mass in non-minimal SUSY models

Two-loop corrections in the NMSSM



The Higgs mass in non-minimal SUSY models

NMSSM results I: heavy singlet & large λ


1-loop / $\alpha_{S}(\alpha_{h} + \alpha_{t})$ / full / MSSM approx.

- Additional corrections crucial for (very) large λ
- Using MSSM results not a good approximation anymore

The Higgs mass in non-minimal SUSY models

NMSSM results II: light singlet

 $1-\log / \alpha_{S}(\alpha_{h} + \alpha_{t}) / \text{full}$

- Corrections can be larger than the ones $\sim \alpha_S$
- Again, MSSM approximations fail

The Higgs mass in non-minimal SUSY models

Vectorlike top partners

[Nickel,FS,1505.06077]

MSSM with vectorlike top partners

$$W = W_{MSSM} + Y_{t'}^{i} Q_{i} T' H_{u} + M_{T'} T' \bar{T}' + m_{t'}^{i} U_{i} \bar{T}'.$$

 \rightarrow Only 1-loop eff. pot results available before

Vectorlike top partners

[Nickel.FS.1505.06077]

MSSM with vectorlike top partners

$$W = W_{MSSM} + Y_{t'}^{i} Q_{i} T' H_{u} + M_{T'} T' \bar{T}' + m_{t'}^{i} U_{i} \bar{T}'.$$

→ Only 1-loop eff. pot results available before

Impact of additional corrections:

$$B_{T'}$$
 = 0 (dashed), $B_{T'}$ = (1.5 TeV)^2 (full), $\tan\beta$ = 3, $M_{T'}$ = 1.0 TeV

shifts by momentum dependence, one-loop thresholds to Y_{top} , two-loop corrections

Models with Dirac gauginos

Models with Dirac gauginos have nice features:

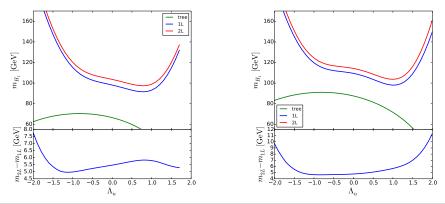
- Suppressed flavour constraints
- Suppressed production of coloured SUSY states at the LHC
- Running of $m_{H_u}^2$ independent of gluino mass

Models with Dirac gauginos

Models with Dirac gauginos have nice features:

- Suppressed flavour constraints
- Suppressed production of coloured SUSY states at the LHC
- Running of $m_{H_u}^2$ independent of gluino mass

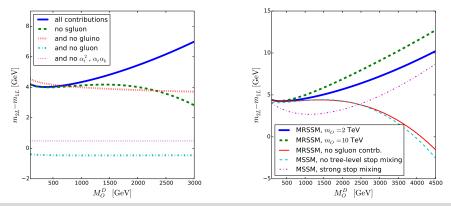
The effects on the Higgs mass are very different compared to the MSSM:


- Tree-level Higgs mass is usually suppressed
- No A-terms: stop corrections are suppressed
- New sgluon corrections at two-loop
- Other, potentially large couplings (depending on the model)

MRSSM

 $W = W_Y + \mu_D \hat{R}_d \hat{H}_d + \mu_U \hat{R}_u \hat{H}_u + \hat{S}(\lambda_d \hat{R}_d \hat{H}_d + \lambda_u \hat{R}_u \hat{H}_u) + \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u^{\text{bound}}.$

New superpotential terms to increase Higgs mass


[Diessner,Kalinoswki,Kotlarski,Stöckinger,1504.05386]

MRSSM

 $W = W_Y + \mu_D \hat{R}_d \hat{H}_d + \mu_U \hat{R}_u \hat{H}_u + \hat{S}(\lambda_d \hat{R}_d \hat{H}_d + \lambda_u \hat{R}_u \hat{H}_u) + \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u .$

- New superpotential terms to increase Higgs mass
- New coloured corrections

The Higgs mass in non-minimal SUSY models

- There is still plenty of space to discover new physics at the LHC or somewhere else ...
- ... but the probability is increasing that it is not minimal SUSY

- There is still plenty of space to discover new physics at the LHC or somewhere else ...
- ... but the probability is increasing that it is not minimal SUSY

- There is still plenty of space to discover new physics at the LHC or somewhere else ...
- ... but the probability is increasing that it is not minimal SUSY

Need for generic Higgs mass calculations

Most extensions of the SM or MSSM have a large impact on the Higgs sector:

 \rightarrow Generic calculations are needed to confront many models with the Higgs measurements

- There is still plenty of space to discover new physics at the LHC or somewhere else ...
- ... but the probability is increasing that it is not minimal SUSY

Need for generic Higgs mass calculations

Most extensions of the SM or MSSM have a large impact on the Higgs sector:

 \rightarrow Generic calculations are needed to confront many models with the Higgs measurements

 The combination SARAH/SPheno are the only available tools to get two-loop Higgs masses for many different models