MU Programmtag 2016

12-13 December 2016 Helmholtz Institute Mainz

Dark Photon Searches at MAMI and MESA

Achim Denig, Mainz

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

Helmholtz-Institut Mainz

JG

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

Search for the $O(GeV/c^2)$ mass scale in a world-wide effort

Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)

Could explain presently seen deviation of 3.6σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008) A way to relate the dark sector to the SM (coupling ~ ε^2)

Kinetic Mixing and Dark Matter

A way to relate the dark sector to the SM (coupling ~ ϵ^2)

Excess of positrons in cosmic ray spectrum due to Dark Matter annihilation?

Dark Photon Search at MAMI

A1: High-Resolution Spectrometers

A1: High-Resolution Spectrometers

Achim Denig

Low-Energy Electron Acceler. with high intensity suited for DP search

Bjorken, Esssig, Schuster, Toro (2009)

Low-Energy Electron Acceler. with high intensity suited for DP search

Bjorken, Esssig, Schuster, Toro (2009)

Low-Energy Electr. Acceler. with high Intensity suited for DP search

Bjorken, Esssig, Schuster, Toro (2009)

Results from A1

\rightarrow at time of publication most stringent limit ruling out major part of the parameter range motivated by $(g-2)_{u}$

- Stack of Ta targets

Results from A1

→ at time of publication most stringent limit ruling out major part of the parameter range motivated by $(g-2)_{\mu}$

Achim Denig

→ at time of publication most stringent limit ruling out major part of the parameter range motivated by $(g-2)_{\mu}$

Dark Photon Search at MESA

New Tool for Low-Precision Physics: MESA

Mainz Energy-Recovering Superconducting Accelerator

P7

E_{max} = 155 MeV I_{max} > 1 mA (ERL) Recirculating ERL Superconducting Cavities commissioning 2020

BDX

٦

Characteristic profile of a supersonic gas jet

- Supersonic gas / cluster jet
- Higher gas density (10¹⁹/cm²)
- O(mm) target length
- Estimated luminosity O(10 ³⁵ cm⁻² s⁻¹) @ 10¹⁹/cm²
 - Windowless !
 - Ready in 2016 !

MAGIX Experiment @ MESA

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
 → a novel technique in nuclear and particle physics

High resolution spectrometers MAGIX:

- double arm
- compact design
- momentum resolution: $\Delta p/p < 10^{-4}$
- acceptance: ±50 mrad
- GEM-based focal plane detectors
- Gas Jet or polarized T-shaped target

Dark Photon at MAGIX/MESA

- Xe gas target
- Luminosity 10³⁵ cm⁻²s⁻¹
- 6 month of data taking

IG

Invisible Dark Photon Decays

So far Kinetic Mixing: $M(\gamma') < 2M(\chi)$ Consider now: $M(\chi) < 2M(\gamma')$ Dark Photon decays dominantly into

Light Dark Matter (LDM), which is not yet constraint experimentally!

Invisible Decay of Dark Photon

- Dark Matter particle not seen
- Few constraints
- Could again explain $(g-2)_{\mu}$
- → Missing energy / mass
- → Search for Dark Matter particle directly using dedicated lowbackground detectors

Model 2: Dark Photon coupling to Dark Matter \rightarrow could still explain (g-2)_µ discrepancy \rightarrow exploit excellent momentum resolution of MAGIX (proton recoil!) \rightarrow Main background: Virtual Compton scattering $e + p \rightarrow e' + p + X$ \rightarrow invisible $m_{\gamma'}^2 = (e + p - e' - p')^2$

Sensitivity at MAGIX currently calculated within a bachelor thesis (use of thin HVMAPS detectors for proton recoil under study)

→ Collimated and boosed (!) pair of Dark Matter particles !

Electron Scattering on Beam Dump
Ollimated and boosed (!) pair of Dark Matter particles !

Beam:

- High intensity electron beam $O(10^{20} 10^{22})$ EOT/year
- ~GeV energy scale
- Passive shielding and active vetos for background subtraction (μ, n, v)
- Time structure for TOF measurement?

Electron Scattering on Beam Dump
 Collimated and boosed (!) pair of Dark Matter particles !

- Low threshold for nucleon recoil detection (MeV) + EM shower detection
- CsI (TI) crystals from BaBar EMC (?) High-tech for DM research considered

Electron Scattering on Beam Dump
 Collimated and boosed (!) pair of Dark Matter particles !

- Low threshold for nucleon recoil detection (MeV) + EM shower detection
- CsI (TI) crystals from BaBar EMC (?) High-tech for DM research considered

JLAB, Mainz, SLAC, Cornell

Beam Dump Experiment (BDX) @ MESA JG U

Electron Scattering on Beam Dump → Collimated pair of Dark Matter particles !

Conclusions

- Dark Photon searches now making more and more direct connection to Dark Matter candidates itself (invisible decays)
- Thriving field and more to come in next 5 10 years
- Anomalous behaviour in ⁸Be* --> ⁸Be e+e- nuclear transition ... Claim for a 17 MeV Dark Photon with ~7 sigma significance

Take Home Message

- **Searches for Dark Photons motivated** by Dark Matter and by (g-2)_u puzzle
- **Tremendous exper. progress seen**

Thank you for your attention

BACKUP

17 MeV Dark Photon ???

Testing competititve parameter range

Low-Energy Electron Acceler. with high intensity suited for DP search

Bjorken, Esssig, Schuster, Toro (2009)

Signal processes

MESA Physics Progam

Parity Violation: sin² Θ_{w} Measurement **Neutron Skin of Nuclei** - Electromagnetic Form Factors of the Nucleons (proton radius puzzle) **Few Body Physics** - Nucl. Physics of astrophysical relevance - Searches for Particles of the Dark Sector

)Klaus Hansen

Background situation

- FLUKA simulation of neutron background promising (~10¹¹ EOT)
- MESA running below pion production threshold → no neutrinos!

The Mainz Microtron MAMI

