DM models with two mediators.

How to save the WIMP

© NASA

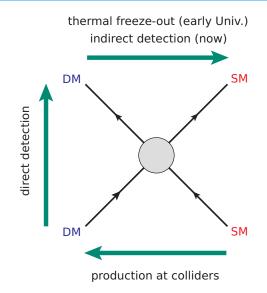
Michael Duerr

MU Programmtag 2016 Mainz, 12 December 2016

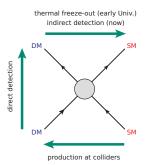
based on: arXiv:1304.0576, arXiv:1309.3970, arXiv:1409.8165, arXiv:1508.01425, and arXiv:1606.07609

in collaboration with: P. Fileviez Pérez, F. Kahlhoefer, K. Schmidt-Hoberg, Th. Schwetz, J. Smirnov, S. Vogl, M. B. Wise

DM-Standard Model interaction.



Connecting different DM experiments.



> Top-down approach:

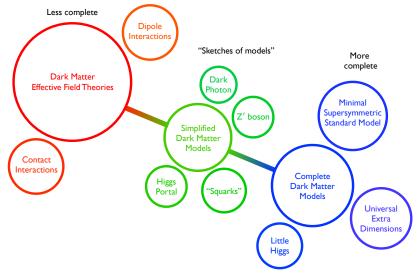
Study well-motivated candidates for DM, obtained in complete models that solve theoretical issues of the SM (e.g., the hierarchy problem). Most signatures/constraints not related

to DM.

> Bottom-up approach:

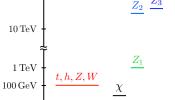
Add the minimal amount of structure to the SM that is necessary to explain DM. How simple can these setups be?

Dark matter theory space.



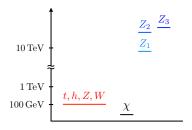
[Worm et al., arXiv:1506.03116]

 $Z_2 \quad \underline{Z_3}$ $10 \,\mathrm{TeV}$



> DM EFT:

only keep DM particle, integrate out the rest



[Worm et al., arXiv:1506.03116]

Spin-0 simplified DM model.

> Interaction of the scalar *S* with SM quarks *q* and DM χ :

$$\mathcal{L} \supset y_{\chi} \bar{\chi} \chi S + \sum_{q} \frac{g_{q} y_{q}}{\sqrt{2}} \bar{q} q S = y_{\chi} \bar{\chi} \chi S + \sum_{q} \frac{g_{q} y_{q}}{\sqrt{2}} \left(\bar{q}_{L} q_{R} + \bar{q}_{R} q_{L} \right) S$$

Problems

- > gauge invariance: left- and right-handed SM fermions have different $SU(2)_L \otimes U(1)_Y$ charges
- > S is a SM singlet: why are terms like S|H|², S²|H|², S³, S⁴ not included although allowed by EW symmetry.

Solution

- > Add terms $\mathcal{L} \supset y_{\chi} \bar{\chi} \chi S + \mu S |H|^2$ to SM Lagrangian
- There is mixing between the SM Higgs and the singlet, resulting in two mass eigenstates h₁ and h₂
- > Interaction with the SM quarks through mixing.

Spin-1 simplified DM model.

> Fermionic DM χ interacts with SM fermions f via a Z' gauge boson

 $\mathcal{L} \supset -Z'_{\mu} \bar{\chi} \left(g^{V}_{\mathsf{DM}} \gamma^{\mu} + g^{A}_{\mathsf{DM}} \gamma^{\mu} \gamma_{5} \right) \chi - \sum_{f} Z'_{\mu} \bar{f} \left(g^{V}_{f} \gamma^{\mu} + g^{A}_{f} \gamma^{\mu} \gamma_{5} \right) f$

Questions

- > Where does this model come from?
- > What's the origin of the masses?
- > Are there relations between the couplings?
- > Are the results obtained reliable?
- > Is SM gauge invariance guaranteed?
- > How to find interesting regions of parameter space?
- > ...

Spin-1 simplified model.

> Fermionic DM χ interacts with SM fermions f via a Z' gauge boson

$$\mathcal{L} \supset -Z'_{\mu} \bar{\chi} \left(g^{V}_{\mathsf{DM}} \gamma^{\mu} + g^{A}_{\mathsf{DM}} \gamma^{\mu} \gamma_{5} \right) \chi - \sum_{f} Z'_{\mu} \bar{f} \left(g^{V}_{f} \gamma^{\mu} + g^{A}_{f} \gamma^{\mu} \gamma_{5} \right) f$$

Perturbative unitarity in $\chi \chi \rightarrow Z'_{I} Z'_{I}$ for axial coupling

- > Matrix element grows with energy: $\mathcal{M} \propto \frac{\left(g_{\rm DM}^{\rm A}\right)^2 \sqrt{s} m_{\chi}}{m^2}$
- > theory only valid up to $\sqrt{s} < \frac{\pi m_{Z'}^2}{(g_{DM}^A)^2 m_{\chi}}$
- > New physics below that scale to restore perturbative unitarity
- > Use the Higgs mechanism to generate mass of the mediator, break the new U(1)' with the vev of a SM singlet scalar.

Part I:

A consistent simplified DM model – two-mediator DM

[MD, Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, arXiv:1606.07609]

Dark matter model with two mediators.

> Majorana DM particle χ and two mediators:

> massive vector boson Z' and real scalar s

- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- > Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2\sqrt{2}} \bar{\chi} \chi s$$
$$\mathcal{L}_{q} \supset -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + \sin \theta \frac{m_{q}}{v} \bar{q} q s \right)$$

Dark matter model with two mediators.

> Majorana DM particle χ and two mediators:

> massive vector boson Z' and real scalar s

- > Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- > Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2\sqrt{2}} \bar{\chi} \chi s$$
$$\mathcal{L}_{q} \supset -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + \sin \theta \frac{m_{q}}{v} \bar{q} q s \right)$$

> couplings are connected:

 $\frac{y_{\chi}}{m_{\chi}} = 2\sqrt{2} \, \frac{g_{\chi}}{m_{Z'}}$

> 6 independent parameters:

particle masses		coupling constants		
DM mass	m_{χ}	dark-sector coupling	$egin{array}{c} g_\chi \ { m or} \ y_\chi \ g_q \ heta \end{array} \ heta \ heta \ heta \end{array}$	
Z' mass	$m_{Z'}$	quark–Z' coupling		
dark Higgs mass	m_s	Higgs mixing angle		

Michael Duerr | DM models with two mediators | 12 December 2016 | page 10

Dark matter model with two mediators.

Majorana DM particle χ and two mediators:

> massive vector boson Z' and real scalar s

- Natural framework: SM gauge group extended by spontaneously broken $U(1)' \rightarrow$ generation of mass for χ and Z'
- > Interactions of DM and the SM quarks with the mediators:

$$\mathcal{L}_{\chi} \supset -\frac{g_{\chi}}{2} \bar{\chi} \gamma^{\mu} \gamma^{5} \chi Z'_{\mu} - \frac{y_{\chi}}{2\sqrt{2}}$$
flavor-universal vector couplings to quarks

$$\mathcal{L}_{q} \supset -\sum_{q} \left(g_{q} \bar{q} \gamma^{\mu} q Z'_{\mu} + si \right)$$
see model building lat

couplings are connected:

m_v ¯

 $\frac{y_{\chi}}{2} = 2\sqrt{2} \frac{g_{\chi}}{2}$

> 6 independent parameters: narticlo maccor

purcleie musses		coupling consta	coupling constants		
DM mass	mχ	dark-sector coupling	g_{χ} or y_{χ}		
Z' mass	$m_{Z'}$	quark–Z' coupling	g_q		
dark Higgs mass	ms	Higgs mixing angle	θ		

coupling constants

Michael Duerr | DM models with two mediators | 12 December 2016 | page 10

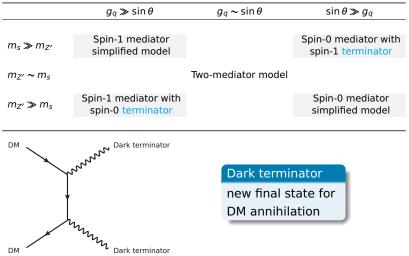
The connection to simplified models.

> A combination of different simplified models:

	$g_q \gg \sin \theta$	$g_q \sim \sin \theta$	$\sin\theta \gg g_q$
$m_s \gg m_{Z'}$	Spin-1 mediator simplified model		Spin-0 mediator with spin-1 terminator
$m_{Z'} \sim m_s$		Two-mediator model	
$m_{Z'} \gg m_s$	Spin-1 mediator with spin-0 terminator		Spin-0 mediator simplified model

The connection to simplified models.

> A combination of different simplified models:



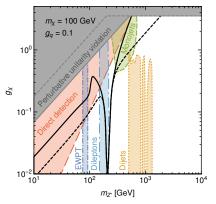
The connection to simplified models.

> A combination of different simplified models:

	$g_q \gg \sin \theta$	$g_q \sim \sin \theta$	$\sin\theta \gg g_q$
$m_s \gg m_{Z'}$	Spin-1 mediator simplified model		Spin-0 mediator with spin-1 terminator
$m_{Z'} \sim m_s$		Two-mediator model	
$m_{Z'} \gg m_s$	Spin-1 mediator with spin-0 terminator		Spin-0 mediator simplified model

> Additional effects not present in usual simplified models:

- > The two mediators can interact with each other: leading to processes like $\chi\chi \rightarrow Z'^* \rightarrow Z's$ or $\chi\chi \rightarrow s^* \rightarrow Z'Z'$
- > Mixing between the dark Higgs and the SM Higgs: gauge-invariant realisation of simplified model with spin-0 s-channel mediator
- > DM stability is a consequence of the gauge symmetry
- > Kinetic mixing at loop level from SM quarks



> Relic density curve

- > solid: $m_s = 3m_\chi$
- > dashed: $m_s = 0.1 m_{\chi}$

Partial wave perturbative unitarity: > conditions on couplings and masses

> from $\chi \chi \rightarrow \chi \chi$:

q

$$\chi < \sqrt{4\pi}$$
, $y_{\chi} < \sqrt{8\pi}$

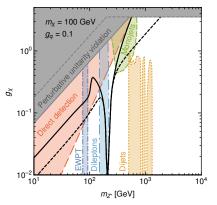
 equations can be rewritten in terms of the couplings, e.g.,

$$g_{\chi} m_{\chi}/m_{Z'} < \sqrt{\pi}$$

> from $ss \rightarrow ss$ and $hh \rightarrow hh$:

 $3(\lambda_h + \lambda_s) \pm \sqrt{9(\lambda_h - \lambda_s)^2 + \lambda_{hs}^2} < 16\pi$

> for
$$\lambda_{hs} = 0$$
 (no Higgs mixing):
 $m_s < \sqrt{4\pi/3}m_{Z'}/g_{\chi}$



> Relic density curve

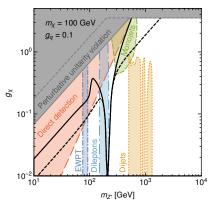
- > solid: $m_s = 3m_\chi$
- > dashed: $m_s = 0.1 m_{\chi}$

Direct detection:

DM–nucleus scattering is suppressed by the DM velocity v and the momentum transfer q:

$$\begin{split} \bar{\chi}\gamma^{\mu}\gamma^{5}\chi\,\bar{q}\gamma_{\mu}q\\ \rightarrow 2\vec{v}^{\perp}\cdot\vec{S}_{\chi}+2i\vec{S}_{\chi}\cdot\left(\vec{S}_{N}\times\frac{\vec{q}}{m_{N}}\right) \end{split}$$

- > coherent enhancement of the scattering cross section leads nevertheless to relevant constraints
- > recoil spectrum substantially different from standard spin-(in)dependent interactions
- > we translate the LUX 2015 results into bound on this interaction



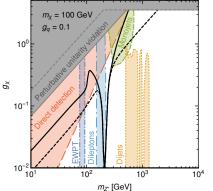
- > Relic density curve
 - > solid: $m_s = 3m_\chi$
 - > dashed: $m_s = 0.1 m_{\chi}$

EWPT and **Dileptons**

- Assumption: tree-level kinetic mixing absent.
- SM quarks are charged under both U(1)_Y and U(1)' and will induce kinetic mixing at loop level:

$$\mathcal{L} = -1/2 \sin \epsilon F'^{\mu\nu} B_{\mu\nu}$$
$$\epsilon(\mu) = \frac{e g_q}{2\pi^2 \cos \theta_W} \log \frac{\Lambda}{\mu}$$
$$\simeq 0.02 g_q \log \frac{\Lambda}{\mu}$$

- kinetic mixing leads to couplings of the Z' to leptons, constrained by dilepton searches at the LHC and the Tevatron
- kinetic mixing also modifies the S and T parameters, which are constrained by EWPT

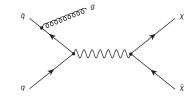


> Relic density curve

- > solid: $m_s = 3m_\chi$
- > dashed: $m_s = 0.1 m_{\chi}$

Monojets

> constrain invisible decays of the Z'

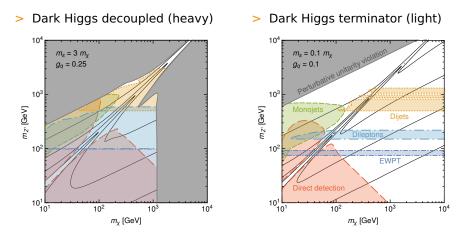


Dijets

- model-independent bounds on the Z' coupling as a function of its mass and width
- > combination of ATLAS and CMS results at 8 and 13 TeV, for $\Gamma_{Z'}/m_{Z'} \leq 0.3$

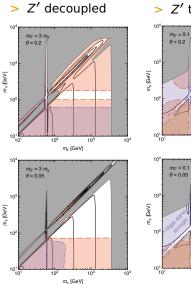
[Fairbairn et al., arXiv:1605.07940]

Spin-1 mediation: results.

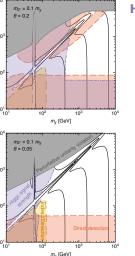


> Dark sector coupling fixed to reproduce observed relic density

Spin-0 mediation ($g_q \ll 1$).



> Z' terminator



Higgs signal strength

- > Reduction of SM Higgs signal strength:
 - Mixing reduces SM Higgs production cross section
 - > for $m_{\chi} < m_h/2$: invisible decays
 - > for $m_s < m_h/2$ or $m_{Z'} < m_h/2$: decays into dark Higgs or Z'

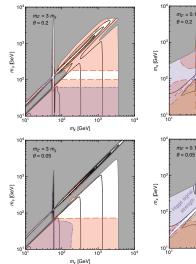
>
$$\mu = \frac{\cos^2 \theta \, \Gamma_{SM}}{\Gamma_{SM} + \Gamma_{ss} + \Gamma_{Z'Z'} + \Gamma_{inv}}$$

> Current bound:
$$\mu > 0.89$$

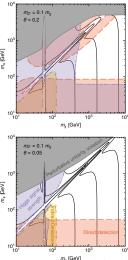
> for $\Gamma_{ss} = \Gamma_{Z'Z'} = \Gamma_{inv} = 0$:
$$\theta < 0.34$$

Spin-0 mediation ($g_q \ll 1$).

> Z' decoupled



> Z' terminator



Direct detection

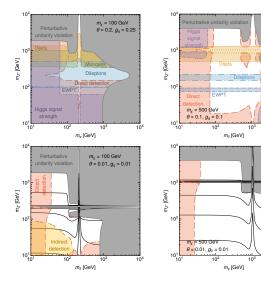
 the scalar mediators induce unsuppressed spin-indep.
 DM–nucleus interactions

Indirect detection

- > $\chi\chi \rightarrow sZ'$ is dominantly s-wave, and dominates thermal freeze-out when kinematically allowed
- > Then, observable indirect detection signals may be obtained from cascade annihilations
- Relevant constraints can be set using FermiLAT observations of MW dwarf spheroidals for

 $m_{Z'}, m_s < m_\chi \lesssim 100\,{\rm GeV}$

Two mediators: results.



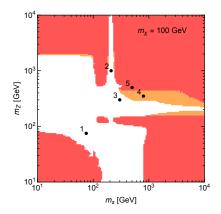
- > sizeable g_q and sin θ :
- > for $m_{\chi} = 100 \text{ GeV}$, only small regions close to the resonances remain viable
- > for $m_{\chi} = 500$ GeV, larger regions are allowed because *s* or *Z'* can be terminators without being strongly constrained

> secluded from the SM:

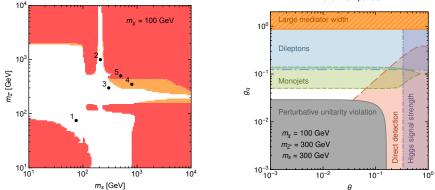
- region with m_{Z'}, m_S > m_X is tightly constrained because annihilations into SM final states cannot reproduce the relic abundance with perturbative couplings
- > for $m_{Z'}$, $m_{S} < m_{\chi}$, annihilation into dark terminators typically dominates
- > experimental constraints can be suppressed since g_q and θ can be small \rightarrow difficult to probe
- > for small masses, set-up can still be probed by indirect detection

Global scan of couplings: set-up.

- > Scan over g_q and θ for fixed masses, dark sector coupling determined by the relic abundance
- > Three categories of mass combinations:
 - > Red: all combinations of g_q and θ are excluded by at least one constraint
 - > White: at least one combination of g_q and θ is consistent with all constraints
 - > Orange: for at least one combination of g_q and θ current constraints do not apply (broad mediator width, $\Gamma_{Z'}/m_{Z'} > 0.3$)



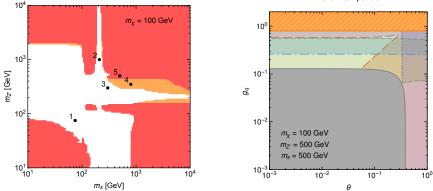
Global scan of couplings: benchmark 3.



Benchmark point 3

> Parameter point allowed for $g_q \approx 0.04$ and small θ

Global scan of couplings: benchmark 5.

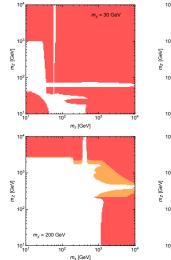


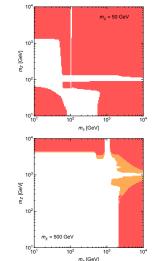
Benchmark point 5

> A combination of all constraints rules out this parameter point

Global scan of couplings: results.

> Scan for different values of m_{χ} :



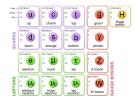


- Small DM masses are tightly constrained: only allowed on a resonance or with at least one dark terminator.
- For large DM masses, the inconclusive regions become more important, but heavy mediators still tightly constrained. No constraints from indirect detection.

Part II:

Model building aspects – gauge theories for baryon (and lepton) number

The Standard Model of particle physics.



> U(1)' gauge extension of the SM:

 $G' = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)'$

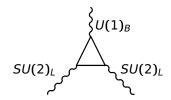
Field	<i>SU</i> (3) _C	<i>SU</i> (2) _L	U(1) _Y	$U(1)_B$	$U(1)_L$
Q_L	3	2	1/6	1/3	0
u _R	3	1	2/3	1/3	0
d_R	3	1	-1/3	1/3	0
ℓ_L	1	2	-1/2	0	1
e _R	1	1	-1	0	1
Н	1	2	1/2	0	0

Baryonic anomalies.

> New gauge group: $SU(3) \otimes SU(2) \otimes U(1)_Y \otimes U(1)_B$

> Baryonic anomalies:

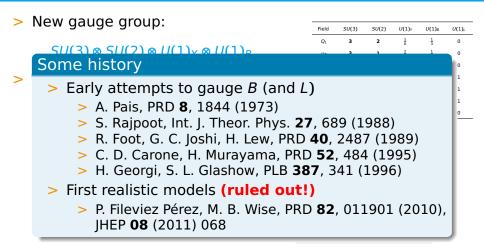
$$\begin{split} &\mathcal{A}_1\left(SU(3)^2\otimes U(1)_B\right), \ \mathcal{A}_2\left(SU(2)^2\otimes U(1)_B\right), \ \mathcal{A}_3\left(U(1)_Y^2\otimes U(1)_B\right), \\ &\mathcal{A}_4\left(U(1)_Y\otimes U(1)_B^2\right), \ \mathcal{A}_5\left(U(1)_B\right), \ \mathcal{A}_6\left(U(1)_B^3\right). \end{split}$$



Field	<i>SU</i> (3)	<i>SU</i> (2)	U(1) _Y	$U(1)_B$	U(1)L
Q_L	3	2	1 6	1 3	0
UR	3	1	<u>2</u> 3	$\frac{1}{3}$	0
d_R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$	0
₽L.	1	2	$-\frac{1}{2}$	0	1
ν_R	1	1	0	0	1
e _R	1	1	-1	0	1
н	1	2	$\frac{1}{2}$	0	0

Standard Model
$$A_2 = -A_3 = \frac{3}{2}$$

Baryonic anomalies.



Consider only uncolored fields:

Field	<i>SU</i> (3)	<i>SU</i> (2)	U(1) _Y	U(1) _B
Ψ	1	2	$\pm \frac{1}{2}$	<i>B</i> ₁
Ψ_R	1	2	$\pm \frac{1}{2}$	<i>B</i> ₂
η_R	1	1	±1	B_1
η_L	1	1	±1	<i>B</i> ₂
Xr	1	1	0	B_1
XL	1	1	0	<i>B</i> ₂

Anomaly cancellation demands: $B_1 - B_2 = -3$

[MD, Fileviez Pérez, Wise, arXiv:1304.0576]

[MD, Fileviez Pérez, arXiv:1309.3970]

Spontaneous symmetry breaking.

> Relevant interactions of the new fields (for $B_1 \neq -B_2$):

$$\begin{split} -\mathcal{L} \supset h_1 \overline{\Psi}_L H \eta_R + h_2 \overline{\Psi}_L \widetilde{H} \chi_R + h_3 \overline{\Psi}_R H \eta_L + h_4 \overline{\Psi}_R \widetilde{H} \chi_L \\ + \lambda_1 \overline{\Psi}_L \Psi_R S_B + \lambda_2 \overline{\eta}_R \eta_L S_B + \lambda_3 \overline{\chi}_R \chi_L S_B + \text{h.c.} \end{split}$$

 $S_B \sim (\mathbf{1}, \mathbf{1}, 0, B_1 - B_2)$

> $\langle S_B \rangle \neq 0$ generates vector-like masses:

 $-\mathcal{L} \supset M_{\Psi}\overline{\Psi}_{L}\Psi_{R} + M_{\eta}\overline{\eta}_{R}\eta_{L} + M_{\chi}\overline{\chi}_{R}\chi_{L} + \text{h.c.}$

 $S_B \sim (\mathbf{1}, \mathbf{1}, 0, -3) \Rightarrow \Delta B = 3 \Rightarrow$ no proton decay

> Remnant Z_2 stabilizes lightest new fermion.

Condition from anomaly cancellation: $B_1 - B_2 = -3$ \Rightarrow two options:

 $B_1 \neq -B_2$

> Dirac DM, SM singlet-like:

 $\chi = \chi_R + \chi_L$

> Coupling to the Z_B :

 $-\mathcal{L} \supset g_B \overline{\chi} \gamma_\mu Z^\mu_B (B_2 P_L + B_1 P_R) \chi$

[MD, Fileviez Pérez, arXiv:1309.3970, arXiv:1409.8165]

 $B_1 = -B_2 = -3/2$:

Majorana DM with axial coupling to the Z_B:

$$-\mathcal{L} \supset \frac{3}{2} g_B \bar{\chi} \gamma_\mu \gamma^5 \chi Z_B^\mu$$

 Completion of the consistent simplified model considered in Part I

[MD, Fileviez Pérez, Smirnov, arXiv: 1508.01425]

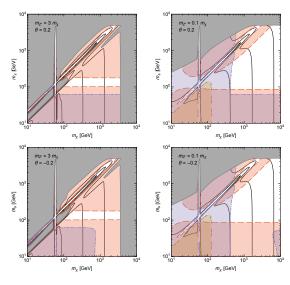
Summary.

- Two-mediator DM as a framework to realize simplified DM models in a theoretically consistent way
- > WIMP hypothesis under severe pressure, heavy mediators strongly constrained. Two viable options:
 - > DM and mediator masses are tuned close to an *s*-channel resonance
 - > One or both mediators are lighter than the DM and open additional parameter space as a dark terminator
- > Dark terminators are hard to test:
 - > Constraints from indirect detection of DM cascade annihilations if $\chi\chi \rightarrow Z's$ or $\chi\chi \rightarrow Z'h$ kinematically allowed
 - > Outlook: search for dark Higgs terminator in $pp \rightarrow Z'^{(*)} \rightarrow \chi \chi s$
- Extensions of the SM with gauged B provide a simple and complete scenario for the DM of the Universe:
 - > No proton decay even though B can be broken at the low scale
 - > DM stability as an automatic consequence of the gauge symmetry
 - > Complete and fully consistent model: gauge invariance, perturbative unitarity, anomaly cancellation

Backup slides.

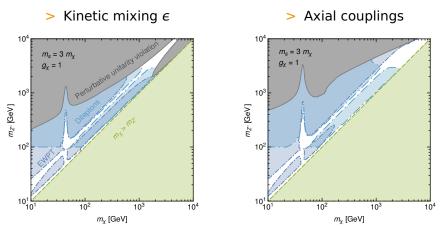
Michael Duerr | DM models with two mediators | 12 December 2016 | page 1

Spin-0 mediation: negative mixing angle.



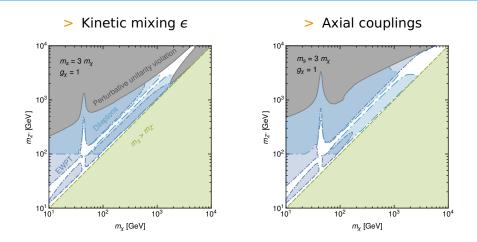
- > Sign of θ relevant for trilinear vertices between the SM Higgs and the dark Higgs.
- > Considering $\theta < 0$ modifies the prediction for $h \rightarrow ss$, hence the bound from the Higgs signal strength is significantly relaxed for $m_s < m_h/2$
- However, this parameter region is independently excluded by direct detection experiments (not sensitive to the sign of θ).
 - > Relic density calculation not significantly affected by the sign of θ
- > Effect is smaller for smaller values of |θ|

Tree-level kinetic and mass mixing.



- > Mass mixing can be realized if the SM Higgs is charged under the U(1)'. This leads to axial couplings of the Z' to SM fermions.
- > ϵ (left) and g_q^A (right) are varied for the correct relic abundance.

Tree-level kinetic and mass mixing.



> Only possible for resonant enhancement from the Z or the Z'.

Baryon and lepton numbers.

B and L are accidental global symmetries in the SM

> Violation of *B*:

> Baryon asymmetry of the Universe:

 $(n_B - n_{\bar{B}})/n_{\gamma} \sim 10^{-10}$

> Proton decay ($\Delta B = 1$, $\Delta L = \text{odd}$):

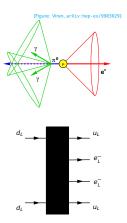
 $\tau_p \ge 10^{32-34}$ years

> Violation of L:

> ν oscillation experiments:

 $\Delta L_e \neq 0, \ \Delta L_\mu \neq 0, \ \Delta L_\tau \neq 0$

> $\Delta L = 2$: Majorana neutrino masses



What about lepton number.

- > New gauge group:
 - $SU(3)\otimes SU(2)\otimes U(1)_Y\otimes U(1)_B\otimes U(1)_L$
- > Purely baryonic anomalies:

$$\begin{split} &\mathcal{A}_1\left(SU(3)^2\otimes U(1)_B\right), \ \mathcal{A}_2\left(SU(2)^2\otimes U(1)_B\right), \ \mathcal{A}_3\left(U(1)_Y^2\otimes U(1)_B\right), \\ &\mathcal{A}_4\left(U(1)_Y\otimes U(1)_B^2\right), \ \mathcal{A}_5\left(U(1)_B\right), \ \mathcal{A}_6\left(U(1)_B^3\right). \end{split}$$

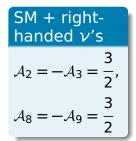
> Purely leptonic anomalies:

$$\begin{split} &\mathcal{A}_7\left(SU(3)^2\otimes U(1)_L\right),\ \mathcal{A}_8\left(SU(2)^2\otimes U(1)_L\right),\ \mathcal{A}_9\left(U(1)_Y^2\otimes U(1)_L\right),\\ &\mathcal{A}_{10}\left(U(1)_Y\otimes U(1)_L^2\right),\ \mathcal{A}_{11}\left(U(1)_L\right),\ \mathcal{A}_{12}\left(U(1)_L^3\right). \end{split}$$

> Mixed anomalies:

$$\begin{split} \mathcal{A}_{13}\left(U(1)_B^2\otimes U(1)_L\right), \ \mathcal{A}_{14}\left(U(1)_L^2\otimes U(1)_B\right), \\ \mathcal{A}_{15}\left(U(1)_Y\otimes U(1)_L\otimes U(1)_B\right). \end{split}$$

Field	<i>SU</i> (3)	SU(2)	U(1) _Y	U(1) _B	U(1)L
Q_L	3	2	1 6	1 3	0
U _R	3	1	<u>2</u> 3	$\frac{1}{3}$	0
d _R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$	0
ℓ _L	1	2	$-\frac{1}{2}$	0	1
ν_R	1	1	0	0	1
e _R	1	1	-1	0	1
н	1	2	$\frac{1}{2}$	0	0



General Solution: gauging B and L.

All anomalies can be cancelled with the following setup:

Field	<i>SU</i> (3)	<i>SU</i> (2)	U(1) _Y	$U(1)_B$	$U(1)_L$
Ψ_L	N	2	Y ₁	B ₁	L ₁
Ψ_R	N	2	<i>Y</i> ₁	<i>B</i> ₂	L ₂
η_R	N	1	Y ₂	B_1	L_1
η_L	N	1	Y ₂	<i>B</i> ₂	L ₂
XR	N	1	Y ₃	B_1	L_1
XL	N	1	Y ₃	<i>B</i> ₂	L ₂

Anomaly cancellation demands: $B_1 - B_2 = -3/N$, $L_1 - L_2 = -3/N$ $Y_2 = Y_1 \mp 1/2$ and $Y_3 = Y_1 \pm 1/2$

Possible scenarios.

Guidelines:

- > new fields should have direct coupling to SM fields, or
- > the lightest new particle is neutral and stable.

>
$$N = 1$$
: Use $Y_1 = \pm 1/2$, $Y_2 = \pm 1$, $Y_3 = 0$.
If the lightest field is neutral \rightarrow DM.

- > N = 3: Use $Y_1 = \pm 1/6$, $Y_2 = \pm 2/3$, $Y_3 = \pm 1/3$. Scalar $S_{BL} \sim (1, 1, 0, -1, -1)$ leads to dimension-7 proton decay operator.
- > N = 8: Extra colored fields, e.g., color octet scalars, to couple the new fermions to the SM fermions.

Other solution for anomaly cancellation.

$$\Psi_{L} \sim \left(\mathbf{1}, \mathbf{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}\right),$$

$$\Sigma_{L} \sim \left(\mathbf{1}, \mathbf{3}, 0, -\frac{3}{2}, -\frac{3}{2}\right),$$

$$\Psi_R \sim \left(\mathbf{1}, \mathbf{2}, \frac{1}{2}, -\frac{3}{2}, -\frac{3}{2}\right)$$
$$\chi_L \sim \left(\mathbf{1}, \mathbf{1}, 0, -\frac{3}{2}, -\frac{3}{2}\right)$$

[Fileviez Pérez, Ohmer, Patel, arXiv:1403.8029]

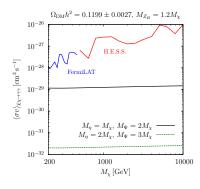
[Ohmer, Patel, arXiv:1506.00954]

- > Less representations
- > Same degrees of freedom after symmetry breaking
- > Majorana dark matter

What about the additional fermions?.

> Majorana DM ($B_1 = -B_2$):

loop-mediated DM annihilation to photons



[[]MD, Fileviez Pérez, Smirnov, arXiv:1508.01425]

> Decays of S_B:

- > For $\theta \rightarrow 0$, the branching fractions of the fermion-loop-mediated decays of S_B may provide clues about the fermion content of the model at the LHC
- > Model with SU(2) triplet:

 $\Gamma_{WW}:\Gamma_{ZZ}:\Gamma_{Z\gamma}:\Gamma_{\gamma\gamma}=20:7:3:1$

