Scattering and resonances from

 finite-volume calculations
Maxwell T. Hansen

Institut für Kernphysik and Helmholtz-Institut Mainz Johannes Gutenberg Universität, Mainz, Germany

In collaboration with Raùl Briceño and Steve Sharpe
Matter and Universe Day
December 12th, 2016

In LQCD it is not possible to directly calculate scattering amplitudes
finite volume

Euclidean momenta

In LQCD it is not possible to directly calculate scattering amplitudes
finite volume

Euclidean momenta

$$
\begin{aligned}
C(\tau) & =\left\langle\mathcal{O}(\tau) \mathcal{O}^{\dagger}(0)\right\rangle \\
& =\sum_{n} c_{n} \exp \left[-E_{n}(L) \tau\right]
\end{aligned} \quad \uparrow \begin{aligned}
& E_{3}(L) \\
& -E_{2}(L) \\
& E_{1}(L) \\
& E_{0}(L)
\end{aligned}
$$

But it is possible to calculate finite-volume energies of multi-particle systems

In LQCD it is not possible to directly calculate scattering amplitudes

But it is possible to calculate finite-volume energies of multi-particle systems

In LQCD it is not possible to directly calculate scattering amplitudes

How are these related?

$\uparrow ـ E_{2}(L)$
$\square E_{1}(L)$
$\rceil-E_{0}(L)$ \geqslant
But it is possible to calculate finite-volume energies of multi-particle systems

In LQCD it is not possible to directly calculate scattering amplitudes

How are these related?

But it is possible to calculate finite-volume energies of multi-particle systems

In the case of two-to-two scattering Lüscher's formalism + extensions have answered these questions

Lüscher (1991), Rummukainen and Gottlieb (1995), Beane et. al. (2005), Kim, Sachrajda, and Sharpe (2005), Christ, Kim, Yamazaki (2005), Bernard et. al. (2011), MTH and Sharpe (2012), Briceño and Davoudi (2013), Li and Liu (2013), Briceño (2014)

In the case of two-to-two scattering

Lüscher's formalism + extensions have answered these questions

Lüscher (1991), Rummukainen and Gottlieb (1995), Beane et. al. (2005), Kim, Sachrajda, and Sharpe (2005), Christ, Kim, Yamazaki (2005), Bernard et. al. (2011), MTH and Sharpe (2012), Briceño and Davoudi (2013), Li and Liu (2013), Briceño (2014)

All results can be summarized by a generalized quantization condition

$$
\operatorname{det}\left[\mathcal{M}_{2}^{-1}\left(E_{n}^{*}\right)+F\left(E_{n}, \vec{P}, L\right)\right]=0
$$

scattering amplitude known geometric function
Both are matrices in angular momentum, spin and channel space

In the case of two-to-two scattering

Lüscher's formalism + extensions have answered these questions

Lüscher (1991), Rummukainen and Gottlieb (1995), Beane et. al. (2005), Kim, Sachrajda, and Sharpe (2005), Christ, Kim, Yamazaki (2005), Bernard et. al. (2011), MTH and Sharpe (2012), Briceño and Davoudi (2013), Li and Liu (2013), Briceño (2014)

All results can be summarized by a generalized quantization condition

$$
\operatorname{det}\left[\mathcal{M}_{2}^{-1}\left(E_{n}^{*}\right)+F\left(E_{n}, \vec{P}, L\right)\right]=0
$$

scattering amplitude known geometric function
Both are matrices in angular momentum, spin and channel space
Requires total energy to be below three-particle production threshold

Ignores (drops) exponentially suppressed corrections $e^{-M_{\pi} L}$

Only useful if one truncates angular momentum space

Using the result: Simplest case is a single-channel

 e.g. for pions in a p-wave the relation reduces to$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result: Simplest case is a single-channel

 e.g. for pions in a p-wave the relation reduces to$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result: Simplest case is a single-channel

 e.g. for pions in a p-wave the relation reduces to$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result: Simplest case is a single-channel

 e.g. for pions in a p-wave the relation reduces to$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Using the result: Simplest case is a single-channel

 e.g. for pions in a p-wave the relation reduces to$$
\cot \delta_{\ell=1}\left(E_{n}^{*}\right)+\cot \phi\left(E_{n}, \vec{P}, L\right)=0
$$

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

Many groups have looked this... including ongoing work here in Mainz

F. Erben, J. Green, D. Mohler, H. Wittig, Lattice 2016 proceedings, 1611.06805

Our aim is to derive the generalization for arbitrary two- and three-particle systems

Our aim is to derive the generalization for arbitrary two- and three-particle systems

Potential applications...
Studying three-particle resonances
$\omega(782) \rightarrow \pi \pi \pi$
$N(1440) \rightarrow N \pi, N \pi \pi$

Calculating weak decay amplitudes and form factors

$$
K \rightarrow \pi \pi \pi
$$

Determining three-body interactions
NNN three-body forces needed as EFT input for studying larger nuclei and nuclear matter

Status of our three-particle formalism

Status of our three-particle formalism

Complete for identical scalar particles with...
No two-to-three coupling

No two-body poles in subprocesses

K matrix poles generate finite-volume effects that need to be accommodated
MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Status of our three-particle formalism

Complete for identical scalar particles with...

No two-to-three coupling

No two-body poles in subprocesses

K matrix poles generate finite-volume effects that need to be accommodated

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)
Total energy such that only three-particle states are on shell

$$
3 M_{\pi}<E^{*}<5 M_{\pi}
$$

Ignores (drops) exponentially suppressed corrections $e^{-M_{\pi} L}$

Only useful if one truncates angular momentum space

Status of our three-particle formalism

Status of our three-particle formalism

Result takes the form of a new quantization condition

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

infinite-volume three-to-three
scattering quantity matrices in a new space, appropriate for three particles

Status of our three-particle formalism

Result takes the form of a new quantization condition

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

infinite-volume three-to-three scattering quantity new object built from geometric functions and two-to-two scattering matrices in a new space, appropriate for three particles
$\mathcal{K}_{\mathrm{df}, 3}$ is a non standard object, similar to a K -matrix
A known integral equation relates this modified K-matrix to the standard scattering amplitude

$$
\mathcal{M}_{3 \rightarrow 3}\left(E^{*}\right)=\mathcal{I E}\left[\mathcal{K}_{\mathrm{df}, 3}\left(E^{*}\right)\right]
$$

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

1. Define three-to-three correlator $C_{L}(E, \vec{P})$ (poles at finite-volume energies)

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

1. Define three-to-three correlator $C_{L}(E, \vec{P})$ (poles at finite-volume energies)

C_{L} analytic structure

C_{∞} analytic structure
2. Show that all $1 / L^{n}$ finite-volume effects are captured by a skeleton expansion

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

1. Define three-to-three correlator $C_{L}(E, \vec{P})$ (poles at finite-volume energies)

C_{L} analytic structure

C_{∞} analytic structure
2. Show that all $1 / L^{n}$ finite-volume effects are captured by a skeleton expansion

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

3. Break all diagrams into finite- and infinite-volume parts and sum

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

3. Break all diagrams into finite- and infinite-volume parts and sum

All of the complication is buried inside F_{3}

$$
F_{3}=\frac{F}{6 \omega L^{3}}-\frac{F}{2 \omega L^{3}} \frac{1}{1+\mathcal{M}_{2, L} G} \mathcal{M}_{2, L} F
$$

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

3. Break all diagrams into finite- and infinite-volume parts and sum

$$
C_{L}=C_{\infty}-A^{\prime} F_{3} \frac{1}{1+\mathcal{K}_{\mathrm{df}, 3} F_{3}} A \quad \text { poles in here }
$$

All of the complication is buried inside F_{3}

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

3. Break all diagrams into finite- and infinite-volume parts and sum

All of the complication is buried inside F_{3}

These are all matrices with indices

$$
\begin{aligned}
& \begin{array}{c}
\text { momentum of } \\
\text { one particle }
\end{array} \\
& \vec{k}=\frac{2 \pi \vec{n}}{L}
\end{aligned}
$$

angular momentum of the other two

$$
\ell, m
$$

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

Sketch of the derivation

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

3. Break all diagrams into finite- and infinite-volume parts and sum

All of the complication is buried inside F_{3}

These are all matrices with indices

$$
\begin{aligned}
& \begin{array}{c}
\text { momentum of } \\
\text { one particle }
\end{array} \\
& \vec{k}=\frac{2 \pi n}{L}
\end{aligned}
$$

angular momentum of the other two

$$
\ell, m
$$

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)

Status of our three-particle formalism

Complete for identical scalar particles with...

No two-to-three coupling

No two-body poles in subprocesses

K matrix poles generate finite-volume effects that need to be accommodated

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)
Our first goal is to lift these two restrictions

Status of our three-particle formalism

Complete for identical scalar particles with...

No two-to-three coupling

No two-body poles in subprocesses

K matrix poles generate finite-volume effects that need to be accommodated

MTH and Sharpe, Phys. Rev. D90, 116003 (2014)
MTH and Sharpe, Phys. Rev. D92, 114509 (2015)

Our first goal is to lift these two restrictions

Inclusion of two-to-three coupling is complete, write-up to appear soon (with Raùl Briceño and Steve Sharpe)
$\begin{gathered}\text { The result is (yet another) } \\ \text { quantization condition }\end{gathered} \operatorname{det}\left[\left(\begin{array}{cc}\mathcal{K}_{2} & \mathcal{K}_{23} \\ \mathcal{K}_{32} & \mathcal{K}_{\mathrm{df}, 3}\end{array}\right)^{-1}+\left(\begin{array}{cc}F_{2} & 0 \\ 0 & F_{3}\end{array}\right)\right]=0$
(Inclusion of two-body poles, spin and coupled-channels, in early stages)

Looking forward...

(1) Complete the formalism for any system of coupled two and three particle channels (any flavor, spin, any number of channels)

Looking forward...

(1) Complete the formalism for any system of coupled two and three particle channels (any flavor, spin, any number of channels)
(2) Develop a code base that allows one to input:

- the channels open and the relevant quantum numbers
- a model or parametrization of the scattering amplitudes
... Determine the finite-volume energies

Looking forward...

(1) Complete the formalism for any system of coupled two and three particle channels (any flavor, spin, any number of channels)
(2) Develop a code base that allows one to input:

- the channels open and the relevant quantum numbers
- a model or parametrization of the scattering amplitudes
... Determine the finite-volume energies

Looking forward...

(1) Complete the formalism for any system of coupled two and three particle channels (any flavor, spin, any number of channels)
(2) Develop a code base that allows one to input:

- the channels open and the relevant quantum numbers
- a model or parametrization of the scattering amplitudes
... Determine the finite-volume energies
(3) Fit to finite-volume energies determined via LQCD to..
- rule out models
- constrain parameters
- determine scattering and resonance properties

Cartoon spectrum...

This program as already seen great success with coupled two-particle channels

Wilson, Dudek, Edwards, Thomas, Phys. Rev. D 91, 054008 (2015)

$$
\begin{gathered}
I=1, J^{P}=0^{+} \\
\left(m_{\pi}=391 \mathrm{MeV}\right)
\end{gathered}
$$

Dudek, Edwards, Wilson
Phys. Rev. D 93, 094506 (2016)

Summary and Conclusions

Formalism is complete for the simplest three-particle system
$c_{L}(E, \vec{P})=0=0+0=0+0=0=0+\cdots$

$\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0$

Extension to fully general systems is underway

Stay tuned for three-particle scattering and resonances from LQCD!

Testing the formalism

$$
\operatorname{det}\left[\mathcal{K}_{\mathrm{df}, 3}^{-1}\left(E_{n}^{*}\right)+F_{3}\left(E_{n}, \vec{P}, L\right)\right]=0
$$

Result and derivation are complicated, so it is important to provide checks to demonstrate that result is correct (and useful)
(1) I / L expansion $E=3 m+\mathcal{O}\left(1 / L^{3}\right)$

Expanding our result about the non-interacting threshold energy, we find... MTH and Sharpe, Phys. Rev. D 93, 096006 (2016)
$1 / L^{3}, 1 / L^{4}, 1 / L^{5}$ match NRQM predictions
Huang and Yang (1957), Beane, Detmold, and Savage, Phys. Rev. D76 074507 (2007), Tan, Phys. Rev. A78, 013636 (2008)
$1 / L^{3}-1 / L^{6}$ match prediction of relativistic ϕ^{4} theory through order λ^{3}. MTH and Sharpe, Phys. Rev. D 93, 014506 (2016)
(2) Unitary three-particle boundstate

We reproduce and extend the NRQM prediction
Meißner, Rìos and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum

NRQM prediction

Meißner, Rìos and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum
The infinite-volume boundstate energy, $E_{B} \equiv 3 m-\frac{\kappa^{2}}{m}$ is shifted in finite volume by an amount

$$
m
$$

$$
\Delta E(L)=c|A|^{2} \frac{\kappa^{2}}{m} \frac{1}{(\kappa L)^{3 / 2}} e^{-2 \kappa L / \sqrt{3}}+\cdots \int \begin{gathered}
\substack{\text { Effimov wavefunction } \\
\text { normalization correction factor } \\
\text { (close to one) }}
\end{gathered} \begin{gathered}
c=-96.351 \cdots \\
\text { geometric constant from }
\end{gathered}
$$

Assumes two-body potential, unitary limit, $\mathrm{P}=0$, s-wave only

NRQM prediction

Meißner, Rìos and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum
The infinite-volume boundstate energy, $E_{B} \equiv 3 m-\frac{\kappa^{2}}{m}$ is shifted in finite volume by an amount m

$$
\Delta E(L)=c|A|^{2} \frac{\kappa^{2}}{m} \frac{1}{(\kappa L)^{3 / 2}} e^{-2 \kappa L / \sqrt{3}}+\cdots \int \begin{gathered}
\substack{\text { normalization correction factor } \\
\text { (close to one) }}
\end{gathered} \underset{\substack{c=-96.351 \cdots \\
\text { Effimor wavefunction }}}{\substack{c=-2 \\
\text { neomic constant from }}}
$$

Assumes two-body potential, unitary limit, $\mathrm{P}=0$, s-wave only
Our formalism gives a general relation between scattering amplitudes and energy levels. So we substitute...

$$
\mathcal{M}_{3} \sim-\frac{\Gamma \bar{\Gamma}}{E^{2}-E_{B}^{2}} \quad \mathcal{M}_{2}=-\frac{16 \pi E_{2}^{*}}{i p^{*}}
$$

and study the lowest three-particle finite-volume level

NRQM prediction

Meißner, Rios and Rusetsky, Phys. Rev. Lett. 114, 091602 (2015) + erratum
The infinite-volume boundstate energy, $E_{B} \equiv 3 m-\frac{\kappa^{2}}{m}$ is shifted in finite volume by an amount m

$$
\Delta E(L)=c \left\lvert\, \underset{\substack{ \\
\begin{subarray}{c}{\text { normalization correction factor } \\
\text { (close to one) }} }}\end{subarray}}{\left.A\right|^{2}} \frac{\kappa^{2}}{m} \frac{1}{(\kappa L)^{3 / 2}} e^{-2 \kappa L / \sqrt{3}}+\cdots\left\{\begin{array}{c}
c=-96.351 \cdots \\
\text { geometric constant from } \\
\text { Effimov wavefunction }
\end{array}\right.\right.
$$

Assumes two-body potential, unitary limit, $\mathrm{P}=0$, s-wave only
Our formalism gives a general relation between scattering amplitudes and energy levels. So we substitute...

$$
\mathcal{M}_{3} \sim-\frac{\Gamma \bar{\Gamma}}{E^{2}-E_{B}^{2}} \quad \mathcal{M}_{2}=-\frac{16 \pi E_{2}^{*}}{i p^{*}}
$$ and study the lowest three-particle finite-volume level

We aim to reproduce the exponent, leading power and overall constant using our relativistic formalism

Reproducing the result...

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$
\Delta E(L)=-\frac{1}{2 E_{B}}\left[\frac{1}{L^{3}} \sum_{\vec{k}}-\int_{\vec{k}}\right] \frac{\bar{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2 \omega_{k} \mathcal{M}_{2}(k)}
$$

Reproducing the result...

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$
\Delta E(L)=-\frac{1}{2 E_{B}}\left[\frac{1}{L^{3}} \sum_{\vec{k}}-\int_{\vec{k}}\right] \frac{\bar{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2 \omega_{k} \mathcal{M}_{2}(k)} \quad \begin{aligned}
& \text { usymmetrized } \\
& \text { residue factor }
\end{aligned}
$$

Reproducing the result...

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$
\Delta E(L)=-\frac{1}{2 E_{B}}\left[\frac{1}{L^{3}} \sum_{\vec{k}}-\int_{\vec{k}}\right] \frac{\bar{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2 \omega_{k} \mathcal{M}_{2}(k)} \text { s-wave scattering amplitude }
$$

2. Derive the functional forms of the infinite-volume quantities

$$
\begin{array}{cc}
\Gamma^{(u)}(k)=\frac{3^{3 / 8} \pi^{1 / 4}}{4} A \sqrt{-c} \mathcal{M}_{2}(k) & \mathcal{M}_{2}(k)=\frac{32 \pi m}{\kappa}\left[1+\frac{3 k^{2}}{4 \kappa^{2}}\right]^{-1 / 2} \\
\begin{array}{c}
\text { follows from matching to } \\
\text { Effimov wavefunction }
\end{array} & \begin{array}{c}
\text { unitary amplitude with spectator } \\
\text { "stealing" some momentum }
\end{array}
\end{array}
$$

Reproducing the result...

1. Show that the relativistic quantization predicts (at leading order in I/L)

$$
\Delta E(L)=-\frac{1}{2 E_{B}}\left[\frac{1}{L^{3}} \sum_{\vec{k}}-\int_{\vec{k}}\right] \frac{\bar{\Gamma}^{(u)}(k) \Gamma^{(u)}(k)}{2 \omega_{k} \mathcal{M}_{2}(k)} \text { s-wave scattering amplitude }
$$

2. Derive the functional forms of the infinite-volume quantities

$$
\Gamma^{(u)}(k)=\frac{3^{3 / 8} \pi^{1 / 4}}{4} A \sqrt{-c} \mathcal{M}_{2}(k) \quad \mathcal{M}_{2}(k)=\frac{32 \pi m}{\kappa}\left[1+\frac{3 k^{2}}{4 \kappa^{2}}\right]^{-1 / 2}
$$

follows from matching to Effimov wavefunction
unitary amplitude with spectator
"stealing" some momentum
3. Evaluate the sum-integral difference with Poisson summation

$$
\begin{aligned}
\Delta E(L) & =c|A|^{2} \frac{3^{3 / 4} \pi^{3 / 2}}{3 \kappa} 6 \int_{\vec{k}} e^{i L \hat{x} \cdot \vec{k}} \frac{1}{2 \omega_{k}}\left[1+\frac{3 k^{2}}{4 \kappa^{2}}\right]^{-1 / 2} \\
& =c|A|^{2} \frac{\kappa^{2}}{m} \frac{1}{(\kappa L)^{3 / 2}} e^{-2 \kappa L / \sqrt{3}}+\cdots
\end{aligned}
$$

MTH and Sharpe, arXiv:1609.04317, (2016)

Status of multi-hadron matrix elements in LQCD... physical system Method to get it from LQCD

 elastic scattering of identical scalars

Lüscher $(1986,1991)$
Rummukainen and Gottlieb (1995)
decay into identical scalars (no other open decay channels)

Lellouch and Lüscher (2001) Kim, Sachrajda and Sharpe (2005), Christ, Kim and Yamazaki (2005)
non-identical scalars, multiple coupled channels*

Bernard et al. (2011), Fu (2012),
Briceño and Davoudi (2012)
decay into multiple, coupled two-particle channels*
scattering of particles with intrinsic spin*

Detmold and Savage (2004)
Göckeler et al. (2012)
Briceño (2014)
particle production mediated by a generic local current*

Meyer (2011), Bernard et al. (2012), A. Agadjanov et al. (2014), Briceño, MTH and Walker-Loud (2014) Briceño and MTH (2015)

